fish fry
Subscribe Now

Superhuman Code, Semantic Analyzers, and Automated Debugging: How Machine Programming Will Change the Future of Electronic Engineering

What if we could improve engineering productivity by 1000% and decrease debugging by 50%? In this week’s podcast, we investigate how machine programming will help us do all of this and more!  Justin Gottschlich (Principal AI Scientist & Director/Founder of Machine Programming Research at Intel Labs) joins me for a deep dive into the world of machine programming. We take a closer look at the motivation behind the development of this pioneering research initiative, the details of Intel’s open source machine programming research system called ControlFlag and why Justin believes that automated debugging and performance extraction will unlock untold possibilities in the realm of software and hardware development.

Click here to download this episode

 

Links for November 12, 2021

Newly Open-Sourced ControlFlag Identifies Hundreds of Defects in Production-Quality Software

The Three Pillars of Machine Programming Provide Core Concepts for Research Advances

Intel Labs ControlFlag (Github) 

More information about Intel Labs

One thought on “Superhuman Code, Semantic Analyzers, and Automated Debugging: How Machine Programming Will Change the Future of Electronic Engineering”

Leave a Reply

featured blogs
Sep 30, 2022
When I wrote my book 'Bebop to the Boolean Boogie,' it was certainly not my intention to lead 6-year-old boys astray....
Sep 30, 2022
Wow, September has flown by. It's already the last Friday of the month, the last day of the month in fact, and so time for a monthly update. Kaufman Award The 2022 Kaufman Award honors Giovanni (Nanni) De Micheli of École Polytechnique Fédérale de Lausanne...
Sep 29, 2022
We explain how silicon photonics uses CMOS manufacturing to create photonic integrated circuits (PICs), solid state LiDAR sensors, integrated lasers, and more. The post What You Need to Know About Silicon Photonics appeared first on From Silicon To Software....

featured video

PCIe Gen5 x16 Running on the Achronix VectorPath Accelerator Card

Sponsored by Achronix

In this demo, Achronix engineers show the VectorPath Accelerator Card successfully linking up to a PCIe Gen5 x16 host and write data to and read data from GDDR6 memory. The VectorPath accelerator card featuring the Speedster7t FPGA is one of the first FPGAs that can natively support this interface within its PCIe subsystem. Speedster7t FPGAs offer a revolutionary new architecture that Achronix developed to address the highest performance data acceleration challenges.

Click here for more information about the VectorPath Accelerator Card

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Tame the SiC Beast - Unleash the Full Capacity of Silicon Carbide

Sponsored by Mouser Electronics and Microchip

Wide band gap materials such as silicon carbide are revolutionizing the power industry. At the same time, they can also introduce byproducts including overheating, short circuits and over voltage. The question remains: how can we use silicon carbide without those headache-inducing side effects? In this episode of Chalk Talk, Amelia Dalton chats with Rob Weber from Microchip about Microchip’s patented augmented switching technology can make those silicon carbide side effects a thing of the past while reducing our switching losses up to 50% and accelerating our time to market as well.

Click here for more information about the Microsemi / Microchip AgileSwitch® ASDAK+ Augmented Switching™ Dev Kit