editor's blog
Subscribe Now

Sticking With their Story: Zeno Demonstrates 1T SRAM at Leading Nodes

Let’s face it: We’re addicted to SRAM. It’s big, it’s power-hungry, but it’s fast. And no matter how much we complain about it, we still use it. Because we don’t have anything better in the mainstream yet.

We’ve looked at attempts to improve conventional SRAM. We’ve looked at completely different memory technologies that might be in line to replace SRAM, like RRAM (first more than five years ago, then last year – and we’re still working on it) and MRAM. And, a couple of years ago, we looked at one attempt to create a new SRAM technology out of conventional transistors – to be clear, just one such transistor (instead of six), plus a possible select transistor.

The company was Zeno, and they were even leveraging this idea as a way to provide greater drive in a transistor – possibly meaning one could stick with older technologies for longer. But, back in the memory story, there was at least one unknown – granted, a “we think so,” but without proof.

Here’s the thing: the original technology was proven on 28-nm planar technology. Could it be leveraged onto more aggressive nodes – ones with FinFETs? While Zeno thought it should work, they hadn’t run the experiments yet to prove it.

And it turns out that there was another nagging question – one of the little details that can sabotage a great new idea. The technology was originally implemented with a buried N-well below the transistor. This wasn’t – and isn’t – part of a standard CMOS flow. Yeah, it’s possible to change flows over time, but it’s super hard, and there better be a dang good payoff from it. Is a 1T SRAM cell enough to motivate that? Perhaps, but the other question to ask – and the one that Zeno asked – is, “Is that modification to the flow really necessary? What happens if we omit the buried N well. Will it still work?”

At this year’s IEDM, they came back and reported on those two items – both in a discussion and in a paper that they presented. And the answer to the two questions is: Yes.

The next figure shows the layout at 14 nm, with a 6T conventional SRAM on the left and their 1T version on the right.

(Image courtesy IEDM/Zeno)

They also showed the “profile” at 14 nm as compared to the original 28-nm planar version. Note both the use of a FinFET and the absence of the underlying n-well on the right. This latest rendition uses the standard foundry CMOS process.

(Image courtesy IEDM/Zeno)

They presented data showing the stability of the bistable element as data is read repeatedly, showing it sticks around – and that the read operation isn’t destructive.

(Image courtesy IEDM/Zeno)

And they presented lots more detail on reading and writing results in their paper. If you have access to the IEDM proceedings, look for, “A Bi-stable 1- /2-Transistor SRAM in 14 nm FinFET Technology for High Density / High Performance Embedded Applications.

 

More info:

Zeno

2 thoughts on “Sticking With their Story: Zeno Demonstrates 1T SRAM at Leading Nodes”

  1. GbE (10/100/1000Base-T) PHY IP Cores with matching 1G Ethernet MAC, PCS and TSN MAC Controller IP Cores for all your high-speed Ethernet Networking applications is available for immediate licensing.

Leave a Reply

featured blogs
Jan 26, 2023
By Slava Zhuchenya Software migration can be a dreaded endeavor, especially for electronic design automation (EDA) tools that design companies… ...
Jan 26, 2023
Are you experienced in using SVA? It's been around for a long time, and it's tempting to think there's nothing new to learn. Have you ever come across situations where SVA can't solve what appears to be a simple problem? What if you wanted to code an assertion that a signal r...
Jan 24, 2023
We explain embedded magnetoresistive random access memory (eMRAM) and its low-power SoC design applications as a non-volatile memory alternative to SRAM & Flash. The post Why Embedded MRAMs Are the Future for Advanced-Node SoCs appeared first on From Silicon To Software...
Jan 19, 2023
Are you having problems adjusting your watch strap or swapping out your watch battery? If so, I am the bearer of glad tidings....

featured video

Synopsys 224G & 112G Ethernet PHY IP OIF Interop at ECOC 2022

Sponsored by Synopsys

This Featured Video shows four demonstrations of the Synopsys 224G and 112G Ethernet PHY IP long and medium reach performance, interoperating with third-party channels and SerDes.

Learn More

featured chalk talk

Enabling Digital Transformation in Electronic Design with Cadence Cloud

Sponsored by Cadence Design Systems

With increasing design sizes, complexity of advanced nodes, and faster time to market requirements - design teams are looking for scalability, simplicity, flexibility and agility. In today’s Chalk Talk, Amelia Dalton chats with Mahesh Turaga about the details of Cadence’s end to end cloud portfolio, how you can extend your on-prem environment with the push of a button with Cadence’s new hybrid cloud and Cadence’s Cloud solutions you can help you from design creation to systems design and more.

Click here for more information about Cadence Cloud Portfolio