editor's blog
Subscribe Now

Sticking With their Story: Zeno Demonstrates 1T SRAM at Leading Nodes

Let’s face it: We’re addicted to SRAM. It’s big, it’s power-hungry, but it’s fast. And no matter how much we complain about it, we still use it. Because we don’t have anything better in the mainstream yet.

We’ve looked at attempts to improve conventional SRAM. We’ve looked at completely different memory technologies that might be in line to replace SRAM, like RRAM (first more than five years ago, then last year – and we’re still working on it) and MRAM. And, a couple of years ago, we looked at one attempt to create a new SRAM technology out of conventional transistors – to be clear, just one such transistor (instead of six), plus a possible select transistor.

The company was Zeno, and they were even leveraging this idea as a way to provide greater drive in a transistor – possibly meaning one could stick with older technologies for longer. But, back in the memory story, there was at least one unknown – granted, a “we think so,” but without proof.

Here’s the thing: the original technology was proven on 28-nm planar technology. Could it be leveraged onto more aggressive nodes – ones with FinFETs? While Zeno thought it should work, they hadn’t run the experiments yet to prove it.

And it turns out that there was another nagging question – one of the little details that can sabotage a great new idea. The technology was originally implemented with a buried N-well below the transistor. This wasn’t – and isn’t – part of a standard CMOS flow. Yeah, it’s possible to change flows over time, but it’s super hard, and there better be a dang good payoff from it. Is a 1T SRAM cell enough to motivate that? Perhaps, but the other question to ask – and the one that Zeno asked – is, “Is that modification to the flow really necessary? What happens if we omit the buried N well. Will it still work?”

At this year’s IEDM, they came back and reported on those two items – both in a discussion and in a paper that they presented. And the answer to the two questions is: Yes.

The next figure shows the layout at 14 nm, with a 6T conventional SRAM on the left and their 1T version on the right.

(Image courtesy IEDM/Zeno)

They also showed the “profile” at 14 nm as compared to the original 28-nm planar version. Note both the use of a FinFET and the absence of the underlying n-well on the right. This latest rendition uses the standard foundry CMOS process.

(Image courtesy IEDM/Zeno)

They presented data showing the stability of the bistable element as data is read repeatedly, showing it sticks around – and that the read operation isn’t destructive.

(Image courtesy IEDM/Zeno)

And they presented lots more detail on reading and writing results in their paper. If you have access to the IEDM proceedings, look for, “A Bi-stable 1- /2-Transistor SRAM in 14 nm FinFET Technology for High Density / High Performance Embedded Applications.

 

More info:

Zeno

3 thoughts on “Sticking With their Story: Zeno Demonstrates 1T SRAM at Leading Nodes”

  1. GbE (10/100/1000Base-T) PHY IP Cores with matching 1G Ethernet MAC, PCS and TSN MAC Controller IP Cores for all your high-speed Ethernet Networking applications is available for immediate licensing.

  2. In addition to its comprehensive digital marketing training in Jaipur, Infonic Training and Development Center offers a range of support services to help students achieve their goals. These services include career counseling, placement assistance, and ongoing support after graduation. The placement assistance program connects students with top companies in the digital marketing industry, providing them with job opportunities and a pathway to success.

Leave a Reply

featured blogs
Dec 8, 2023
Read the technical brief to learn about Mixed-Order Mesh Curving using Cadence Fidelity Pointwise. When performing numerical simulations on complex systems, discretization schemes are necessary for the governing equations and geometry. In computational fluid dynamics (CFD) si...
Dec 7, 2023
Explore the different memory technologies at the heart of AI SoC memory architecture and learn about the advantages of SRAM, ReRAM, MRAM, and beyond.The post The Importance of Memory Architecture for AI SoCs appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Universal Verification Methodology Coverage for Bluespec RISC-V Cores

Sponsored by Synopsys

This whitepaper explains the basics of UVM functional coverage for RISC-V cores using the Google RISCV-DV open-source project, Synopsys verification solutions, and a RISC-V processor core from Bluespec.

Click to read more

featured chalk talk

Reliable Connections for Rugged Handling
Materials handling is a growing market for electronic designs. In this episode of Chalk Talk, Amelia Dalton and Jordan Grupe from Amphenol Industrial explore the variety of connectivity solutions that Amphenol Industrial offers for materials handling designs. They also examine the DIN charging solutions that Amphenol Industrial offers and the specific applications where these connectors can be a great fit.
Dec 5, 2023
398 views