industry news
Subscribe Now

Novel Electrode Material Boosts Supercapacitor Performance for Electric Vehicles

Researchers at Dongguk University have designed and synthesized a novel hybrid composite electrode material that significantly enhances the performance of supercapacitors for use in hybrid electric vehicles (HEVs). This composite electrode is comprised of cobalt selenide nanorod-copper selenide polyhedron-decorated over graphene oxide (CCS@GO) and offers unprecedented electrochemical properties. The researchers demonstrated an ecofriendly, economical fabrication, improved charge storage and retention, increased energy and power density attributable to the unique morphology of the electrode material.
Next-generation electronic devices and hybrid electric vehicles (HEVs) need excellent charge storage devices to function well. Currently, majority of the charge storage devices are made from conventional metal sulfide or metal oxide-based supercapacitor electrodes. However, poor electrical conductivity and low energy density are major challenges in the use of supercapacitors, limiting their commercial applications. In contrast, transition metal selenides offer several enhanced electrochemical properties due to their in-built advantageous physicochemical properties including high chemical stability, a narrow bandgap, and low electronegativity that leads to a faster electron-conducting rate than that of metal sulfides and oxides. “A composite formed by the combination of metal selenides and carbon template is a fascinating approach to tune the properties of electrodes for electrochemical applications. Based on this idea, we have designed and constructed a new hybrid composite electrode comprising cobalt selenide nanorod-copper selenide polyhedron-decorated over graphene oxide (CCS@GO), using a wet-chemical strategy”, explains Professor Hyun-Seok Kim from the Division of Electronics and Electrical Engineering, Dongguk University, Seoul, South Korea, who has been actively researching 2D materials and nano- and micro-electronics for energy and sensor devices.
In a recent article made available online on August 9, 2021, and published in volume 427 of Chemical Engineering Journal, Prof. Kim and his research team demonstrated that the resultant composite electrode provides abundant space for migration of ions, and allows swift faradaic redox reactions leading to high storage performance in an electrochemical cell. The team attributed the enhanced electrochemical features to the unique morphology and high surface area of the novel electrode material. They established that the synthesized electrode has outstanding electrochemical charge storage and retention properties. Using the electrodes, they constructed an asymmetric supercapacitor device with a capacitance of 192.8 Fg-1 @ 1A g-1; energy density of 54.6 Wh kg-1; power density 700 W kg-1, and capacitance retention of about 82.5% over 10,000 cycles. “We achieved our ultimate goal of constructing an electrochemical supercapacitor with improved electrochemical activity and long-term durability,” notes an excited Prof. Kim.
Moreover, the team employed an ecofriendly, cost-effective, energy-efficient, wet-chemical fabrication method with earth-abundant copper and cobalt source materials for developing the new electrodes. Taken together, this development paves the way for user-free, non-flammable energy storage materials for next generation electronic and electrical devices.
Title of original paper: Unveiling a binary metal selenide composite of CuSe polyhedrons/CoSe2 nanorods decorated graphene oxide as an active electrode material for
high-performance hybrid supercapacitors
Journal: Chemical Engineering Journal
About Dongguk University
Dongguk University, founded in 1906, is located in Seoul, South Korea. It comprises 13 colleges that cover a variety of disciplines and has local campuses in Gyeongju, Goyang, and Los Angeles. The university has 1300 professors who conduct independent research and 18000 students undertaking studies in a variety of disciplines. Interaction between disciplines is one of the strengths on which Dongguk prides itself; the university encourages researchers to work across disciplines in Information Technology, Bio Technology, CT, and Buddhism.
About the author
Dr. Hyun-Seok Kim (PhD, University of Wisconsin-Madison, USA) is a Professor who teaches at the Division of Electronics and Electrical Engineering at Dongguk University, Seoul, South Korea. His research interests include 2D materials and nano- and micro-electronics for energy and sensor devices. Prior to his current role, he served as a post-doctoral researcher at the University of Wisconsin-Madison and a senior R&D engineer at Intel Corporation, USA. In recent times, along with his colleagues, particularly Dr. K. Karuppasamy and Dr. Dhanasekaran Vikraman, Dr. Kim is actively developing 2D-material-based nanostructures for energy storage and conversion applications.

Leave a Reply

featured blogs
Mar 24, 2023
With CadenceCONNECT CFD less than a month away, now is the time to make your travel plans to join us at the Santa Clara Convention Center on 19 April for our biggest CFD event of the year. As a bonus, CadenceCONNECT CFD is co-located with the first day of CadenceLIVE Silicon ...
Mar 23, 2023
Explore AI chip architecture and learn how AI's requirements and applications shape AI optimized hardware design across processors, memory chips, and more. The post Why AI Requires a New Chip Architecture appeared first on New Horizons for Chip Design....
Mar 10, 2023
A proven guide to enable project managers to successfully take over ongoing projects and get the work done!...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored by Synopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser. This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

Battery Management System Overview
Sponsored by Infineon
Effective battery management for electric vehicles is a critical design element faced by engineers today. In this episode of Chalk Talk, Amelia Dalton chats with Marco Castellanos from Infineon about the key functions of battery management for electric vehicles, the role that cell balancing, voltage measurement and temperature measurement play in battery management ICs, and how wireless battery management using bluetooth low energy can help you tackle a variety of battery management challenges for your next design.
Jun 28, 2022