industry news
Subscribe Now

Imec Presents Highly Accurate Model for Energy Yield Prediction of Photovoltaic Modules

MUNICH, Germany—May 30, 2017—At this week’s Intersolar Europe, imec, the world-leading research and innovation hub in nano-electronics, energy, and digital technology, and partner in EnergyVille, will introduce simulation software that accurately predicts the daily energy yield of solar cells and solar modules under varying meteorological and irradiation conditions. Imec’s model combines optical, thermal and electrical parameters to provide detailed insight on thermal gradients in the solar module. The model integrates the effect of these gradients, resulting in a significantly better accuracy (root mean square error of only 2.5 percent) than commercially available software packages for energy yield estimation.

Solar cell efficiencies and photovoltaic module performances are typically only measured under standard lab conditions. However, in reality, photovoltaic modules are operated in the field under conditions that are substantially different from these standard lab conditions. They are exposed to varying meteorological conditions in terms of irradiation, temperature and wind, which, in addition, all vary during the course of the day. In contrast to most existing models for energy yield calculation, imec’s model starts from the physical parameters of the solar cells and the used materials, and includes on top of that their variations due these changing external conditions. In this way a ‘closer to reality’ model is obtained, enabling a more precise assessment of the effects of solar cell and module technology changes on the energy yield of these photovoltaic cells and modules.

Imec’s simulation software features a coupled optical-thermal-electrical approach and provides detailed insight on thermal gradients in the solar module and their effect on energy yield. The incorporation of wind and thermal transient effects produced a highly accurate calculation of daily energy yield with a root mean square error of only 2.5 percent, under strongly varying meteorological conditions (e.g. clouds passing by, changes in wind speed, ….) compared with the actual measured output. This is significantly better than energy yield calculations that could be obtained using commercial software packages under these varying weather circumstances.

“This record accuracy was obtained thanks to validation tests under controlled circumstances, such as wind tunnels, as well as from detailed data series with fine time granularity from PV modules in the field,” stated Hans Goverde, researcher at imec.

“It is an excellent tool to make a rapid assessment of material and technology changes at the cell and module level and their influence on the levelized cost-of-electricity,” noted Jef Poortmans, scientific director photovoltaics at imec. “Moreover, it is also the ideal starting point to come up with significantly improved short-term energy yield forecasting, which will lead to lower lost opportunity costs and better energy management systems for PV power plants as well as residential solar systems. This means that our model could e.g. become very useful for PV plant operators and electricity grid operators, enabling them to better forecast the short-term varying output of PV power plants, in this way limiting curtailment situations and grid balancing issues, and hence create more value across the full renewable energy value chain.”

About imec
Imec is the world-leading research and innovation hub in nano-electronics, energy and digital technologies. The combination of our widely acclaimed leadership in microchip technology and profound software and ICT expertise is what makes us unique. By leveraging our world-class infrastructure and local and global ecosystem of partners across a multitude of industries, we create groundbreaking innovation in application domains such as healthcare, smart cities and mobility, logistics and manufacturing, and energy.

Imec is a partner in EnergyVille (www.energyville.be). EnergyVille is an association of the Flemish research centers KU Leuven, VITO, imec and UHasselt in the field of sustainable energy and intelligent energy systems.
As a trusted partner for companies, start-ups and universities we bring together close to 3,500 brilliant minds from over 75 nationalities. Imec is headquartered in Leuven, Belgium and also has distributed R&D groups at a number of Flemish universities, in the Netherlands, Taiwan, USA, China, and offices in India and Japan. In 2016, imec’s revenue (P&L) totaled 496 million euro. Further information on imec can be found at www.imec-int.com.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a “stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shanghai) Co. Ltd.) and imec India (Imec India Private Limited), imec Florida (IMEC USA nanoelectronics design center).

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

Intel AI Update
Sponsored by Mouser Electronics and Intel
In this episode of Chalk Talk, Amelia Dalton and Peter Tea from Intel explore how Intel is making AI implementation easier than ever before. They examine the typical workflows involved in artificial intelligence designs, the benefits that Intel’s scalable Xeon processor brings to AI projects, and how you can take advantage of the Intel AI ecosystem to further innovation in your next design.
Oct 6, 2023
26,679 views