industry news
Subscribe Now

E-PEAS & TCT Demonstrate Inductive Energy Harvesting

3rd September 2020 – e-peas continues to lead innovation in the energy harvesting sector – this time through cooperation with French specialist in magnetic components TCT. By bringing together TCT’s engineering expertise in ferromagnetic cores with e-peas’ popular AEMS series of ultra-low power PMICs, the two companies have been able to develop an innovative energy harvesting platform that is based on induction. This will have huge potential within building automation and smart-grid deployments.

The companies have now demonstrated this platform in action. A video of it can be viewed here: https://e-peas.com/news/how-energy-can-be-harvested-using-magnetic-core-as-a-harvester/

The demonstration will consist of a compact TCT current generator accompanied by an e-peas AEM30940 PMIC. This current generator will be placed onto an electricity cable (carrying a few amps of AC current). Through induction it will be able to harvest energy from the AC current passing through the cable, with the AEM30940 (in combination with a semi-active rectifier) converting and managing the current delivered. The DC current will subsequently be used to power a connected hardware device comprising multiple sensors and Bluetooth Low Energy (BLE) beacon connectivity. An LED indicator is included to show that this is in operation.

The 3µW cold start power of the AEM30940, which is much lower than competing solutions, will prove pivotal in allowing energy to be efficiently harvested from the AC source. Also, thanks to low internal leakage exhibited by this PMIC, it will be able to take care of the storage of extracted energy and provide a regulated voltage to the connected low-power hardware. The AEM30940’s linear converters provide two independents regulated voltages, which thereby eliminates the need of any additional converters. The connected hardware will monitor ambient parameters (temperature, humidity and light levels) and will then transmit this data over the BLE link.

“By using inductance, battery-less control and monitoring units will have the functionality needed to draw energy from electrical cabling that is already deployed. The logistical difficulties of having to periodically replace battery cells can be completely avoided, presenting facilities management with greater convenience and lower operational costs,” states Alexandre Decombejean, Sales Manager at TCT. “The energy harvester attached to the cable is built around a specific soft magnetic material core with high permeability, and will reach an elevated output voltage even with a low current.”

“We have already been able to validate the effectiveness of e-peas technology in harvesting energy from thermal, vibrational, RF and photovoltaic sources. Now, by combining our technology with TCT’s, we have the ability to do so via inductance,” adds Christian Ferrier, CMO of e-peas. “This opens up an array of exciting new market opportunities for us as a leader company in energy harvesting and processing solutions.”

About e-peas
e-peas develops and markets disruptive ultra-low power semiconductor technology. This enables industrial and IoT wireless product designers to substantially extend battery lifespans and eliminate the heavy call-out costs of replacing batteries, without in any way compromising on reliability. Relying on 15 years of research and patented intellectual property, the company’s products increase the amount of harvested energy and drastically reduce the energy consumption of all power consuming blocks within wireless sensor nodes. Headquartered in Mont-Saint-Guibert, Belgium, with additional offices in Switzerland and the USA, plus a presence in Taiwan, e-peas offers a portfolio of energy harvesting power management interface ICs, microcontrollers and sensor solutions.
www.e-peas.com

About TCT
Located in the Burgundy region of France, TCT is a respected specialist in the design and manufacture of high performance magnetic components. It has more than 60 employees and serves over 180 customers internationally. The company offers standard and custom-built products in a variety of sizes.
www.tct-magnetic.com

Leave a Reply

featured blogs
Sep 29, 2020
Our friends at DesignCon and Design News are launching the DesignCon Back-to-School webinar series.  Experts from DesignCon’s conference will share their insights from the electronics chip, board, and system industries, walking through use cases, defining various tools...
Sep 29, 2020
Back in our school days, we were asked to use blue ink while the teachers used red ink for correction. I also remember using multicolor pens to emphasize important points in my assignments and... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Texas Instruments: Pushing Power Further

Sponsored by Texas Instruments

Power is all around us. Every connection, every invention begins with power. Watch this short video to see how we are pushing the limits of power management.

Explore our power density portfolio

Featured Paper

The Cryptography Handbook

Sponsored by Maxim Integrated

The Cryptography Handbook is designed to be a quick study guide for a product development engineer, taking an engineering rather than theoretical approach. In this series, we start with a general overview and then define the characteristics of a secure cryptographic system. We then describe various cryptographic concepts and provide an implementation-centric explanation of physically unclonable function (PUF) technology. We hope that this approach will give the busy engineer a quick understanding of the basic concepts of cryptography and provide a relatively fast way to integrate security in his/her design.

Click here to download the whitepaper

Featured Chalk Talk

Maxim's Himalaya uSLIC Portfolio

Sponsored by Mouser Electronics and Maxim Integrated

With form factors continuing to shrink, most engineers are working hard to reduce the number of discrete components in their designs. Power supplies, in particular, are problematic - often requiring a number of large components. In this episode of Chalk Talk, Amelia Dalton chats with John Woodward of Maxim Integrated about how power modules can save board space, improve performance, and help reliability.

Click here for more information about Maxim Integrated Himalaya uSLIC™ MAXM1546x Step-Down Power Modules