industry news
Subscribe Now

Dongguk University Researchers Design a Neuromorphic Device Resembling Human Brain

Scientists at Dongguk University have designed a novel optoelectronic device with a dual function of memory storage as well as processing. In this Internet of Things (IoT) era, massive amounts of data are produced, collected, and transmitted through devices in real time. The separation of memory and data processing units adversely affects the smooth functioning of optoelectronic devices. South Korean scientists have now designed a predictable optoelectronic device—a multi-functioning “memtransistor”—to address these limitations.
The current computing systems which have separate memory and processing devices cause excess energy consumption and slow down data transmission. Interestingly, even state-of-the-art 2D memtransistors—devices that can collect, store, and process information—exhibit sub-optimal electronic properties, such as unusually high operating voltages.
To overcome these limitations, scientists at Dongguk University designed a predictable multi-functioning memtransistor. Their paper, which was made available online on November 5, 2021 and was published in Volume 5, Issue 12 of Small Methods on December 13, 2021, described how they fabricated a highly efficient optoelectronic and memory device using two-dimensional (2D) materials—nanomaterials that are merely one or two atoms thick—by stacking 2D tellurium flakes on a thin rhenium disulfide flake, followed by the deposition of an aluminum oxide layer.
According to senior author, Dr. Hyunsik Im, who works as a Professor at Dongguk University, the team has developed an “Electrically and optically tunable p-n junction memtransistor fabricated with an Al2O3 encapsulated 2D Te/ReS2 van der Waals (vdW) heterostructureThis combines the favorable optical and electrical properties of p-type 2D Te and n-type ReS2 semiconductors, with a stable Al2O3 charge trapping layer.”
In this optoelectronic memory device, multiple resistance states can be tuned by applying different voltages, or light powers. The transition between the high or low resistance states is controlled by carriers trapped in the Al2O3 layer under high electric fields. This causes an additional gate bias that tunes the Schottky barrier height at the ReS2/source electrode interface, while preserving p-n junction behaviors during the switching process, giving the device the added benefit of being electrically conductive, while being able to store memory efficiently.
Quite remarkably, this novel device is material-independent and scalable. Moreover, it allows the integration of additional electronic circuits for neuromorphic computing—a set of processes that attempt to mimic the brain’s architecture and data processing capabilities.
“The development of these highly efficient memtransistor-based synaptic devices can decrease circuit complexity and minimize power consumption for neuromorphic computing and visual information processing. Mimicking synaptic activities in the human brain could become a much more manageable task in the near future,” says Prof. Im
The architecture of the human brain continues to inspire nanomaterial researchers. Meanwhile, let’s raise a toast to the research team for this ‘brainy’ achievement!
Title of original paper: Electrically and Optically Controllable p–n Junction Memtransistor Based on an Al2O3 Encapsulated 2D Te/ReS2 van der Waals Heterostructure
Journal: Small Methods
About Dongguk University
Dongguk University, founded in 1906, is located in Seoul, South Korea. It comprises 13 colleges that cover a variety of disciplines and has local campuses in Gyeongju, Goyang, and Los Angeles. The university has 1300 professors who conduct independent research and 18000 students undertaking studies in a variety of disciplines. Interaction between disciplines is one of the strengths on which Dongguk prides itself; the university encourages researchers to work across disciplines in Information Technology, Bio Technology, CT, and Buddhism.
About the authors
Dr. Duc Anh Nguyen is a Research Assistant Professor in the Division of Physics and Semiconductor, Dongguk University, Seoul, Korea. His focus is currently on the synthesis and application of 2D materials for novel optoelectronic applications.
Dr. Hyunsik Im is a Professor in the Division of Physics and Semiconductor Science, Dongguk University. His research interest includes nanodevices with novel functionalities and mesoscopic physics at low temperatures. He completed his D.Phil. degree in Physics at Oxford in 1999 and worked as a researcher at the IIS, University of Tokyo and at RIKEN, Japan.

Leave a Reply

featured blogs
Jul 1, 2022
Throughout this season at Formula One, porpoising has been the most talked-about phenomenon, especially with complaints from drivers about blurred vision and severe back aches. Week after week, not... ...
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys 112G Ethernet IP Interoperating with Optical Components & Equalizing E-O-E Link

Sponsored by Synopsys

This OFC 2022 demo features the Synopsys 112G Ethernet IP directly equalizing electrical-optical-electrical (E-O-E) channel and supporting retimer-free CEI-112G linear drive for low-power applications.

Learn More

featured paper

Addressing high-voltage design challenges with reliable and affordable isolation tech

Sponsored by Texas Instruments

Check out TI’s new white paper for an overview of galvanic isolation techniques, as well as how to improve isolated designs in electric vehicles, grid infrastructure, factory automation and motor drives.

Click to read more

featured chalk talk

Current Sense Resistor - WFC & WFCP Series

Sponsored by Mouser Electronics and Vishay

If you are working on a telecom, consumer or industrial design, current sense resistors can give you a great way to detect and convert current to voltage. In this episode of Chalk Talk, Amelia Dalton chats with Clinton Stiffler from Vishay about the what, where and how of Vishay’s WFC and WFCP current sense resistors. They investigate how these current sense resistors are constructed, how the flip-chip design of these current sense resistors reduces TCR compared to other chip resistors, and how you can get started using a Vishay current sense resistor in your next design.

Click here for more information about Vishay / Dale WFC/WFCP Metal Foil Current Sense Resistors