industry news
Subscribe Now

CacheQ’s New Compiler Supports Multi-Threading CPU Acceleration, Enables Software Developers to “Write Once, Accelerate Anywhere”

486% Speedup Over Single-Thread Execution on x86 with 12 Cores; 400% Faster than Single-Threaded GCC on Apple M1 with Eight Cores

LOS GATOS, Calif., May 25, 2021 (GLOBE NEWSWIRE) — CacheQ Systems, Inc., a leader in compiler tools for heterogeneous compute systems, today announced support for multi-threading acceleration for CPUs with multiple physical cores through its new compiler, offering software developers the ability to “write once, accelerate anywhere.”

A feature of the CacheQ Compiler Collection, the compiler eliminates manual code rewriting and the use of threading libraries or complex parallel execution APIs such as OpenMP or MPI. It takes single-threaded C code and generates executables that can run on CPUs, leveraging many physical x86 cores with or without hyperthreading, as well as Arm and RISC-V cores.

Using CacheQ’s flexible compiler, users generate code for multicore processors on the same or different architectures and benchmark usage with runtime variables. They can add to the hardware for ultimate performance and power usage or reduce the number of cores and allocate other processes to achieve more optimal performance per watt of power consumed.

The result is a speedup of more than 486% over single-thread execution on X86 processors with 12 logical cores, based on benchmarks from the Black Scholes financial algorithm that simulates human behavior in stock trading. An Apple M1 processor with eight Arm cores is 400% faster than the single-threaded GNU Compiler Collection (GCC).

“This is a game changer for software developers to take full advantage of parallel processing power without spending years learning to code with OpenMP or MPI,” remarks Clay Johnson, CEO of CacheQ Systems. “They can accelerate a single-thread algorithm with our tools to quickly compile and target any CPU with two or more cores.”

The CacheQ Compiler Collection
CacheQ enables software developers to easily develop and deploy custom hardware accelerators for heterogeneous compute systems including FPGAs, CPUs and GPUs. Its CacheQ Compiler Collection is modelled after the GCC tool suite, including a user interface similar to common open-source compilers. Because it requires limited code modification, development time is shortened and system quality improved.

The tool suite enables compilation, linting and error detection, performance prediction, profiling, debug and visualization of the generated virtual engine. It supports target hardware including single and multicore processors, as well as heterogeneous compute systems with FPGA accelerators connected to x86 and Arm processors.

The CacheQ Compiler Collection supports C code and C++ through “hybrid” access of an exported function call.

Additional Benchmarks
Additional benchmarks of the CacheQ Compiler Collection highlight its ability to span high-end servers and consumer electronic devices. Execution of the M1 processor with two cores outperformed the x86 chip with 11 cores, demonstrating a cost-per-watt advantage. The Apple M1 processor with four cores performed 210% faster than the x86 with 12 cores. Overall, it performed approximately 1,476% faster than the single-threaded GCC running on x86 using the CacheQ Compiler Collection.

All simulations were performed on the same code compiled for different targets. Benchmarks were performed on an Intel i7-8700k x86 CPU running at 3.7GHz with six physical cores and hyperthreading for 12 logical cores available running Ubuntu 18.04. Apple M1 benchmarks were captured with a Parallels VM running native Arm Ubuntu 20.04 image.

Availability and Pricing
The CacheQ compiler tools are shipping now through a limited access program. Pricing is available on request.

Visit the CacheQ website for additional information or to view a brief video on the new multicore compiler technology. Requests for more information should be sent to sales@cacheq.net.

About CacheQ Systems
CacheQ Systems, headquartered in Los Gatos, Calif., with a development center in Longmont, Colo., was founded in 2018 to develop compiler technology that brings acceleration technology to developers with little to no hardware-specific modifications or pragmas.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Non-Magnetic Interconnects
Sponsored by Mouser Electronics and Samtec
Magnets and magnetic fields can cause big problems in medical, scientific, industrial, space, and quantum computing applications but using a non-magnetic connector can help solve these issues. In this episode of Chalk Talk, Amelia Dalton and John Riley from Samtec discuss the construction of non-magnetic connectors and how you could use non-magnetic connectors in your next design.
May 3, 2023
40,413 views