industry news
Subscribe Now

Silicon Carbide power MOSFETs from TT Electronics operate in environmentally challenged applications

Weybridge, UK, 22 June 2016 – TT Electronics, a global provider of engineered electronics for performance critical applications, today launched a Silicon Carbide (SiC) power MOSFET that is designed for high temperature, power efficiency applications with a maximum junction temperature of +225°C.  As a result of this operating potential, the package has a higher ambient temperature capability and can therefore be used in applications, including distribution control systems with greater environmental challenges, such as those in close proximity to a combustion engine.

Supplied in a high power dissipation, low thermal resistance, fully hermetic, ceramic SMD1 package the 25A, 650V rated SML25SCM650N2B also ensures faster switching and low switching losses in comparison to normal Si type MOSFETs, consequently the size of the passive components in the circuit can be reduced resulting in weight and space saving benefits. The N-channel MOSFET features a total power dissipation of 90W at a TJ temperature of 25 degrees.  A range of screening options are available.

For use in applications that require faster switching in high temperature power conversion topologies and systems, the SML25SCM650N2B will find favour with design engineers working in industrial power conversion applications including oil drilling, distributed management control systems, renewable energy applications / power conversion, space systems and applications.

Silicon Carbide is the new semiconductor technology of choice to help power electronic design engineers design with more efficiency, with higher operating temperatures to lay the foundation for future conversion and control system design demands.  With the SML25SCM650N2B, the combination of new Silicon Carbide technology with a high reliability, industry standard outline hermetic packaging technology coupled with TT Electronics’ renowned Lutterworth based design and manufacturing capability delivers value and very high performance to the end customer.

For further information please visit http://www.ttelectronics.com

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

E-Mobility - Charging Stations & Wallboxes AC or DC Charging?
In this episode of Chalk Talk, Amelia Dalton and Andreas Nadler from Würth Elektronik investigate e-mobility charging stations and wallboxes. We take a closer look at the benefits, components, and functions of AC and DC wallboxes and charging stations. They also examine the role that DC link capacitors play in power conversion and how Würth Elektronik can help you create your next AC and DC wallbox or charging station design.
Jul 12, 2023
33,638 views