industry news
Subscribe Now

Renesas Electronics Introduces High-Reliability Advanced Low-Power SRAM Products

Düsseldorf, 11 December 2014 – Renesas Electronics, a premier provider of advanced semiconductor solutions, today introduced 5 new product versions in the RMLV0816B and RMLV0808B series of Advanced Low-Power SRAM (Advanced LP SRAM), the company’s flagship SRAM (static random access memory) devices. The new memory devices have a density of 8 megabits (Mb) and utilize a fine fabrication process technology with a circuit linewidth of 110 nanometers (nm).

In the Advanced LP SRAM Series, which can achieve soft error (Note 1) free and latch-up (Note 2) free operation, Renesas started mass production of 4 Mbit products fabricated in a fine feature size process with a 110 nm circuit line width in December 2013 and now has launched the 8 Mbit products in this series. The new devices are high-reliability products that achieve the same soft error rate as Renesas’ earlier products that were fabricated in a 150 nm process. They also achieve low-power operation with a standby current of maximum of 2 microamperes (µA) at 25°C, making them suitable for data storage in battery-backup devices.

Renesas low-power SRAM products are used extensively in a wide range of products including industrial, office automation, communication, automotive, and consumer applications, and earned the industry’s largest market share in 2013 (Note 3). As in the past, along with increased performance and functionality in user systems, the reliability of the system as a whole is critically important. This is why high reliability is required in the SRAM, which stores important information such as the system software and data. In particular, measures to deal with soft errors due to alpha rays and neutrons in cosmic radiation are seen as critical.

Since Renesas has added a capacitor (Note 5) to the memory node (Note 4) in the cell of the Advanced LP SRAM devices, these devices have an extremely high resistance to soft errors. A common method for dealing with soft errors is to correct the errors that occur using an ECC (error correcting code) circuit embedded in the SRAM or user system. There are, however, limits to such techniques, such as not being able to correct multiple bit errors depending on the performance of the ECC itself. To deal with this issue, the Renesas Advanced LP SRAM adopts structural measures that suppress soft error occurrence itself. The results of system soft error testing in Renesas currently mass produced 150 nm process Advanced LP SRAM has shown that these devices are essentially soft error free.

Additionally, the load transistors (p channel) in the SRAM cell are formed as polysilicon TFT (note 6) devices, and since they are stacked in the upper layer of the n-channel MOS transistors that are formed on the silicon substrate, only n-channel transistors are formed on the underlying silicon substrate. As a result, there are no parasitic thyristor structures in the memory area and thus these devices have a structure in which latch-up cannot, in principle, occur.

As a result of these design aspects, these products are SRAM devices with extremely high reliability compared to full CMOS type (Note 7) devices that have the ordinary memory cell structure. Thus they can contribute to even higher performance and reliability in equipment that requires high reliability, such as FA equipment, test equipment, smart grid related equipment, and transportation systems.

Furthermore, Renesas Advanced LP SRAM achieves an even more compact cell size by combining polysilicon TFT stacking technology with stacked transistor technology. For example, the cell size in Renesas 110 nm Advanced LP SRAM is comparable to that in a full CMOS type SRAM fabricated in a 65 nm process.

Renesas intends to further strengthen its SRAM product lineups by adding new 16 Mbit products fabricated in a 110 nm process.

Refer to the separate sheet for the main specifications of the new SRAM devices

Note 1) Soft error:

A phenomenon in which the information in memory is lost due to charge that is generated in the silicon substrate when external alpha particle or neutron radiation strikes the substrate. Unlike reproducible hardware errors, such as physical breakdown of the semiconductor device, these errors are not reproducible, and the data can be restored to its original state by being rewritten by the system. Generally, the rate at which soft errors occur increases as the feature size of the fabrication process is reduced.

Note 2) Latch-up:

A phenomenon in which NPN and PNP structures (parasitic bipolar transistors) formed from the CMOS transistor well, the silicon substrate, the p diffusion layer, and the n diffusion layer go to the on state due to overvoltages applied to power supply or input pins, and large currents flow from power supply to ground.

Note 3) Source: Renesas

Note 4) Memory node:

The flip-flop circuit node that stores information as a high or low level within the memory cell.

Note 5) Stacked capacitor:

Capacitors in which the electrodes are formed from polysilicon and metal. Use of stacked capacitors formed in the upper layer of MOS transistors on the silicon substrate is an effective method for reducing the memory cell area.

Note 6) TFT (thin-film transistor):

A transistor formed from thin-film polysilicon. Use of TFTs formed in the upper layer of MOS transistors on the silicon substrate as the SRAM load transistor is an effective method for reducing the memory cell area.

Note 7) Full CMOS type:

An SRAM memory cell structure that has a total of 6 transistors, consisting of p-channel MOS and n-channel MOS transistors on the same silicon substrate surface. This memory cell has a large area and also has a risk of latch-up.

Availability

Sample of Renesas Electronics’ new SRAMs will be available in December 2014. Mass production is scheduled to begin in January 2015. (Availability is subject to change without notice.)

About Renesas Electronics Europe

Renesas Electronics is the world’s number one supplier of microcontrollers and a premier supplier of advanced semiconductor solutions, including system-on-chip and a wide range of discrete analogue and power devices. Established in 2010, Renesas Electronics combines the collective semiconductor expertise of Hitachi, Mitsubishi Electric and NEC Electronics, encapsulating more than 200 years’ experience.

Renesas’ products are the result of decades of research and investment into semiconductor technology and customer solutions. Today, they provide pioneering platforms for the advancement of the Smart Society, embedding intelligence, connectivity, safety and security in solutions for cars, homes, buildings and factories. In Europe, Renesas complements its cutting-edge technology with resources that foster customer proximity and span the entire product lifecycle. These include the European Technology Centre, which designs innovative solutions specifically for Europe, and the European Quality Centre in Düsseldorf, which provides technical support to customers throughout the region. Renesas also operates an effective ecosystem, comprising the industry’s largest local support network and an extensive network of over 800 hardware and software alliance partners.

Headquartered in Japan, Renesas Electronics has subsidiaries in 20 countries worldwide. More information is available atwww.renesas.eu.

Renesas Electronics Europe on http://twitter.com/Renesas_Europehttp://facebook.com/RenesasEurope and http://youtube.com/RenesasPresents

Leave a Reply

featured blogs
Apr 26, 2024
LEGO ® is the world's most famous toy brand. The experience of playing with these toys has endured over the years because of the innumerable possibilities they allow us: from simple textbook models to wherever our imagination might take us. We have always been driven by ...
Apr 26, 2024
Biological-inspired developments result in LEDs that are 55% brighter, but 55% brighter than what?...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

FlyOver® Technology: Twinax FlyOver® System for Next Gen Speeds -- Samtec and Mouser
Sponsored by Mouser Electronics and Samtec
In this episode of Chalk Talk, Amelia Dalton and Matthew Burns from Samtec investigate the challenges of routing high speed data over lossy PCBs. They also discuss the benefits that Samtec’s Flyover® cable assembly systems bring to data center and embedded designs and how Samtec is furthering innovation with their high speed interconnect solutions. 
Apr 15, 2024
1,670 views