industry news
Subscribe Now

Holst Centre and imec launch research program on flexible OLED displays

Eindhoven (NL) and Leuven (B) – January 17, 2012 – Holst Centre and imec launch a new research program on next-generation flexible OLED (organic light emitting diode) displays. It builds on their proven technology track record and solid base of existing research partners in related fields such as Organic and Oxide Transistors and Flexible OLED Lighting. The primary objective of the new program is to develop an economically scalable route to high-volume manufacturing of flexible active-matrix OLED displays. The shared program will bring together partners from across the value chain to tackle challenges such as high resolution, low power consumption, large area, outdoor readability, flexibility and light weight.

Today, state-of-the-art OLED displays are small and mobile and used in applications such as smart phones and tablet PCs. They are characterized by a strong contrast compared to conventional LCDs due to the fact that OLED pixels emit only when activated, achieving a more intense black. Moreover, OLEDs have a faster response time, eliminating image lag. OLEDs can also consume less power, depending on the usage profile, while providing better contrast and viewing angle than conventional LCDs. OLEDs are also much simpler in design and contain less components compared to LCDs, enabling substantial process cost reductions.

The ambition of the new program is work towards flexible, high-resolution OLED displays. The program will tackle the individual challenges towards the next-generation of OLED displays: a mechanically flexible encapsulation film and TFT backplane; and printed, high-efficiency OLEDs. New materials and processes that allow for cheaper production, better quality, lower power, more robustness and more flexibility will be developed. Moreover, the design of the drivers, pixel circuits and TFT backplane matrix will be reconsidered as increasing display area influences the amount of pixels-per-inch or the refresh rates. Finally the program scope includes the development of new manufacturing equipment such as fine patterning equipment for backplanes and tools for integrated roll-to-roll manufacturing.

Gerwin Gelinck (Holst Centre), Program Manager of the OLED Display Program: ”
Holst Centre and its partners continuously look for new application domains for the generic flexible electronic technologies that have been developed. This ensures our research stays tangible, application-oriented and relevant for industry and society. Flexible displays represent an enormous economic and technical opportunity for flat panel manufacturers and its supply chain. As such they are seen as an attractive landing place for many new technologies. Flexible displays are therefore becoming a top priority research effort for many companies worldwide, including many of our current industrial partners.”

Paul Heremans (imec), Program Manager of the OLED Display Program: “With this program in mind, we already have been working more and more towards integrating separate building blocks and have realized OLED displays using both organic and metal oxide TFT backplanes. Thin, plastic substrates were used, and the displays were fully encapsulated using our state-of-the-art barrier technology. Part of this was done with other research institutes in a European project called FLAME, but we could really pull this off because of intense collaboration with some of our industrial partners. We will demonstrate some of these display prototypes in 2012.”

Flexible OLED display developed in close collaboration with Polymer Vision, one of the industrial partners in the shared programs at Holst Centre and imec.

About imec

Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec’s revenue (P&L) was 285 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a “stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About Holst Centre

Holst Centre is an independent open-innovation R&D centre that develops generic technologies for Wireless Autonomous Sensor Technologies and for Flexible Electronics. A key feature of Holst Centre is its partnership model with industry and academia around shared roadmaps and programs. It is this kind of cross-fertilization that enables Holst Centre to tune its scientific strategy to industrial needs.

Holst Centre was set up in 2005 by imec (Flanders, Belgium) and TNO (The Netherlands) with support from the Dutch Ministry of Economic Affairs and the Government of Flanders. It is named after Gilles Holst, a Dutch pioneer in Research and Development and first director of Philips Research.

Located on High Tech Campus Eindhoven, Holst Centre benefits from the state-of-the-art on-site facilities. Holst Centre has over 170 employees from 28 nationalities and a commitment from over 30 industrial partners.

More information: www.holstcentre.com

Leave a Reply

featured blogs
Apr 26, 2024
LEGO ® is the world's most famous toy brand. The experience of playing with these toys has endured over the years because of the innumerable possibilities they allow us: from simple textbook models to wherever our imagination might take us. We have always been driven by ...
Apr 26, 2024
Biological-inspired developments result in LEDs that are 55% brighter, but 55% brighter than what?...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Enabling IoT with DECT NR+, the Non-Cellular 5G Standard
In the ever-expanding IoT market, there is a growing need for private, low cost networks. In this episode of Chalk Talk, Amelia Dalton and Heidi Sollie from Nordic Semiconductor explore the details of DECT NR+, the world’s first non-cellular 5G technology standard. They investigate how this self-healing, decentralized, autonomous mesh network can help solve a variety of IoT connectivity issues and how Nordic is helping designers take advantage of DECT NR+ with their nRF91 System-in-Package family.
Aug 17, 2023
30,517 views