feature article
Subscribe Now

Lattice CrossLinkPlus

Flashback Future FPGAs

Three decades ago – at the dawn of programmable logic technology – programmable logic devices such as CPLDs and FPGAs were primarily used for “glue logic.” That is, they could connect just about any digital thing to any other digital thing, regardless of the interface or protocol. In simple terms, FPGAs were digital duct tape. 

Those times are long gone, however, with today’s fancy feature-packed devices brimming with memories and multipliers and processors and AI engines, design teams are using FPGAs as full-fledged systems-on-chip (or -in-package). But one of the key features of FPGAs continues to be the rich and robust selection of external interfaces and the ability to bridge between those with flexible programmable LUT fabric. 

Well, perhaps those days aren’t quite so “gone” after all.  

Lattice Semiconductor recently announced CrossLinkPlus – an updated and aptly-named iteration of their popular “CrossLink” devices, which are the modern-day embodiment of “glue logic,” connecting many lanes of MIPI to just about any interface and protocol you’d want. There is a host of peripherals out there that you’d love to connect to your SoC, but with all of them speaking different protocols and using different IO standards, it’s really difficult to match up your SoC with your sensors, displays, and other widgets. Sometimes, even if your SoC has the right interface, you’ve got too many devices to connect to that port type, and you can end up designing in a larger, more expensive, more power-hungry application processor than you need – just to get the IO you require.

CrossLinkPlus gives you a better way to do all that. You can use it to connect multiple sensors, multiple/different displays and display types, and just about any interface or protocol that you can name into your system. CrossLinkPlus supports SubLVDS, LVDS, SLVS200, CMOS, and MIPI D-PHY. The magic is in the MIPI side – as the device packs two four-lane MIPI D-PHY transceivers at 6Gbps per port – giving a total of 12Gbps on the MIPI side and 11 programmable, source-synchronous I/O pairs for camera and display interfacing. It brings along 6K LUTs of FPGA fabric – enough for some pretty fancy bridging interconnect – as well as 180Kb embedded memory. It’s like an old-school glue logic FPGA, but with modern interfaces. It packs all this into a tiny 3.5mm X 3.5mm package, and it burns a miserly 5 mW – 135 mW operating power.

As those in the front of the room may have already noticed, there is a “Plus” on the end of “CrossLinkPlus.” That’s because Lattice has been selling the CrossLink family for a while:

https://www.eejournal.com/article/20160517-lattice/ https://www.eejournal.com/fish_fry/20160527-fishfry/

The “Plus” turns out to be a biggie. Lattice has added on-chip flash configuration memory to the CrossLink device. That means several good things. First, you don’t have to add off-chip FPGA configuration stuff to your design. Second, and most importantly, you can load the configuration bitstream into the device from on-chip flash in less than 10ms. That makes the FPGA qualify as “instant on.” 10ms is important because the human brain is able to perceive images after 15ms, so power-up and configuration can happen faster than human perception – hence, “instant on.” 

For many of the applications of this device – smart cameras, IoT devices with varying displays, etc. – that rapid startup means that more of the device can be left in “sleep” mode – which saves the most valuable commodity of all – system power. If your system can be largely powered down during vast standby intervals and can be instantly summoned to life to begin useful work in the literal blink of an eye, the ever-critical power metrics such as battery life can be extended dramatically. 

We expect that this device will co-exist well in systems that also use Lattice’s line of endpoint AI acceleration devices. With the current explosion in AI- and video-driven IoT endpoints with embedded vision intelligence, Lattice is making smart bets on socket wins with their FPGA technology, and they are hitting market holes that large FPGA companies like Xilinx and Intel are largely leaving behind. It will be interesting to watch as this new, low-power, high-performance market for mobile-friendly FPGAs shapes up.

One thought on “Lattice CrossLinkPlus”

  1. Lattice’s CrossLink Plus seems like a particularly versatile solution for video-related IoT applications where low power is paramount and there are countless variations in camera and display formats and sizes.
    Thoughts?

Leave a Reply

featured blogs
Sep 20, 2021
As it seems to be becoming a (bad) habit, This Week in CFD is presented here as Last Week in CFD. But that doesn't make the news any less relevant. Great article on wind tunnels because they go... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Gesture Detection for Automotive In-Cabin Applications

Sponsored by Texas Instruments

See how using 60GHz radar for automotive in-cabin gesture is ideal due to its small size and ability to sense through various materials. Applications using gesture control include changing radio stations, answering phone calls, opening windows, and more.

Click to learn more about gesture detection using 60GHz mmWave radar sensors

featured paper

Configure the charge and discharge current separately in a reversible buck/boost regulator

Sponsored by Maxim Integrated (now part of Analog Devices)

The design of a front-end converter can be made less complicated when minimal extra current overhead is required for charging the supercapacitor. This application note explains how to configure the reversible buck/boost converter to achieve a lighter impact on the system during the charging phase. Setting the charge current requirement to the minimum amount keeps the discharge current availability intact.

Click to read more

featured chalk talk

PolarFire SoC FPGA Family

Sponsored by Mouser Electronics and Microchip

FPGA SoCs can solve numerous problems for IoT designers. Now, with the growing momentum behind RISC-V, there are FPGA SoCs that feature RISC-V cores as well as low-power, high-security, and high-reliability. In this episode of Chalk Talk, Amelia Dalton chats with KK from Microchip Technology about the new PolarFire SoC family that is ideal for demanding IoT endpoint applications.

Click here for more information about Microchip Technology PolarFire® SoC FPGA Icicle Kit