industry news
Subscribe Now

Oasys Design Systems adds DFT Capabilities to Chip Synthesis

SANTA CLARA, CALIF. –– June 2, 2011 — Oasys Design Systems today announced that its Chip Synthesis™ platform, in use in production environments, now includes design for test (DFT) capabilities, further extending the fast speed and high capacity of Oasys’ RealTime Designer™ software. 

This follows an earlier announcement that the Chip Synthesis platform supports chip-level power analysis and optimization, and has the ability to synthesize a design from the register transfer level (RTL) with UPF or CPF power constraints.  These additional features complete the fully integrated Chip Synthesis front-to-back design flow.

Oasys will offer informative and continuous demonstrations of RealTime Designer in Booth #2031 at the 48th Design Automation Conference (DAC) June 6-8 at the San Diego Convention Center in San Diego, Calif. 

“Half of the top 10 non-memory semiconductor companies are already using RealTime Designer or are actively evaluating RealTime Designer for their most complex designs,” remarks Paul van Besouw, Oasys’ president and chief executive officer (CEO).  “All believe that a Chip Synthesis environment will improve productivity and design efficiency.  Rounding out RealTime Designer’s capabilities with DFT and chip-level power analysis and optimization extends its fast speed and high capacity, making it a full-featured tool.”

The combination of full-chip synthesis and RealTime Designer’s DFT capabilities help designers create a better DFT architecture and chip partitioning for DFT.  With RealTime Designer, full-chip DFT synthesis can be performed in a single pass with fast turnaround and without the need for complex DFT abstraction and bottom-up flows.

Features include design checking and debugging for various DFT rule violations, test clock analysis, power-domains aware physical scan chain ordering and lockup-latch insertion.  It integrates third-party DFT-compression.  Information on pre-inserted DFT logic can be imported in the industry-standard IEEE 1450.6 (CTL) format. 

Chip Synthesis is a fundamental shift in how synthesis is applied to the design and implementation of integrated circuits (ICs).  Traditional block-level synthesis tools do a poor job of handling chip-level issues.  RealTime Designer is the first design tool for physical register transfer level (RTL) synthesis of 100-million gate designs.  It features a unique RTL placement approach that eliminates unending design closure iterations between synthesis and layout. 

RealTime Designer follows a “Place First” methodology that takes RTL code, partitions it into blocks, places it in the context of a floorplan and implements each block through to placement.  Chip-level constraints are automatically propagated across the blocks and the design is optimized for the best possible quality of results.  During the optimization phase, RealTime Designer will repartition the design at RTL and re-implement it until chip-level constraints are met.

Availability and Pricing

The latest version RealTime Designer, with DFT and chip-level power analysis capabilities, is shipping now and is priced from $395,000 (U.S.) for a one-year, time-based license.

About Oasys Design Systems

Oasys Design Systems is a privately funded electronic design automation (EDA) software supplier with a revolutionary new platform called Chip Synthesis™, a fundamental shift in how synthesis is used to design and implement ICs larger than 20-million gates.  It has attracted the support of legendary EDA leaders and its RealTime Designer™ product is in use at leading-edge semiconductor and systems companies worldwide.  Follow Oasys on Twitter at: www.twitter.com/OasysDS.  Corporate Headquarters is located at 3250 Olcott Street, Suite 120, Santa Clara, Calif.  95054. Telephone:  (408) 855-8531.  Facsimile:  (408) 855- 8537.  Email:  info@oasys-ds.com.  For more information, visit:  www.oasys-ds.com.

Leave a Reply

featured blogs
May 8, 2024
Learn how artificial intelligence of things (AIoT) applications at the edge rely on TSMC's N12e manufacturing processes and specialized semiconductor IP.The post How Synopsys IP and TSMC’s N12e Process are Driving AIoT appeared first on Chip Design....
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

ROHM Automotive Intelligent Power Device (IPD)
Modern automotive applications require a variety of circuit protections and functions to safeguard against short circuit conditions. In this episode of Chalk Talk, Amelia Dalton and Nick Ikuta from ROHM Semiconductor investigate the details of ROHM’s Automotive Intelligent Power Device, the role that ??adjustable OCP circuit and adjustable OCP mask time plays in this solution, and the benefits that ROHM’s Automotive Intelligent Power Device can bring to your next design.
Feb 1, 2024
14,316 views