industry news
Subscribe Now

Oasys Design Systems adds DFT Capabilities to Chip Synthesis

SANTA CLARA, CALIF. –– June 2, 2011 — Oasys Design Systems today announced that its Chip Synthesis™ platform, in use in production environments, now includes design for test (DFT) capabilities, further extending the fast speed and high capacity of Oasys’ RealTime Designer™ software. 

This follows an earlier announcement that the Chip Synthesis platform supports chip-level power analysis and optimization, and has the ability to synthesize a design from the register transfer level (RTL) with UPF or CPF power constraints.  These additional features complete the fully integrated Chip Synthesis front-to-back design flow.

Oasys will offer informative and continuous demonstrations of RealTime Designer in Booth #2031 at the 48th Design Automation Conference (DAC) June 6-8 at the San Diego Convention Center in San Diego, Calif. 

“Half of the top 10 non-memory semiconductor companies are already using RealTime Designer or are actively evaluating RealTime Designer for their most complex designs,” remarks Paul van Besouw, Oasys’ president and chief executive officer (CEO).  “All believe that a Chip Synthesis environment will improve productivity and design efficiency.  Rounding out RealTime Designer’s capabilities with DFT and chip-level power analysis and optimization extends its fast speed and high capacity, making it a full-featured tool.”

The combination of full-chip synthesis and RealTime Designer’s DFT capabilities help designers create a better DFT architecture and chip partitioning for DFT.  With RealTime Designer, full-chip DFT synthesis can be performed in a single pass with fast turnaround and without the need for complex DFT abstraction and bottom-up flows.

Features include design checking and debugging for various DFT rule violations, test clock analysis, power-domains aware physical scan chain ordering and lockup-latch insertion.  It integrates third-party DFT-compression.  Information on pre-inserted DFT logic can be imported in the industry-standard IEEE 1450.6 (CTL) format. 

Chip Synthesis is a fundamental shift in how synthesis is applied to the design and implementation of integrated circuits (ICs).  Traditional block-level synthesis tools do a poor job of handling chip-level issues.  RealTime Designer is the first design tool for physical register transfer level (RTL) synthesis of 100-million gate designs.  It features a unique RTL placement approach that eliminates unending design closure iterations between synthesis and layout. 

RealTime Designer follows a “Place First” methodology that takes RTL code, partitions it into blocks, places it in the context of a floorplan and implements each block through to placement.  Chip-level constraints are automatically propagated across the blocks and the design is optimized for the best possible quality of results.  During the optimization phase, RealTime Designer will repartition the design at RTL and re-implement it until chip-level constraints are met.

Availability and Pricing

The latest version RealTime Designer, with DFT and chip-level power analysis capabilities, is shipping now and is priced from $395,000 (U.S.) for a one-year, time-based license.

About Oasys Design Systems

Oasys Design Systems is a privately funded electronic design automation (EDA) software supplier with a revolutionary new platform called Chip Synthesis™, a fundamental shift in how synthesis is used to design and implement ICs larger than 20-million gates.  It has attracted the support of legendary EDA leaders and its RealTime Designer™ product is in use at leading-edge semiconductor and systems companies worldwide.  Follow Oasys on Twitter at:  Corporate Headquarters is located at 3250 Olcott Street, Suite 120, Santa Clara, Calif.  95054. Telephone:  (408) 855-8531.  Facsimile:  (408) 855- 8537.  Email:  For more information, visit:

Leave a Reply

featured blogs
Oct 23, 2020
Processing a component onto a PCB used to be fairly straightforward. Through-hole products, or a single or double row surface mount with a larger centerline rarely offer unique challenges obtaining a proper solder joint. However, as electronics continue to get smaller and con...
Oct 23, 2020
[From the last episode: We noted that some inventions, like in-memory compute, aren'€™t intuitive, being driven instead by the math.] We have one more addition to add to our in-memory compute system. Remember that, when we use a regular memory, what goes in is an address '...
Oct 23, 2020
Any suggestions for a 4x4 keypad in which the keys aren'€™t wobbly and you don'€™t have to strike a key dead center for it to make contact?...
Oct 23, 2020
At 11:10am Korean time this morning, Cadence's Elias Fallon delivered one of the keynotes at ISOCC (International System On Chip Conference). It was titled EDA and Machine Learning: The Next Leap... [[ Click on the title to access the full blog on the Cadence Community ...

featured video

Better PPA with Innovus Mixed Placer Technology – Gigaplace XL

Sponsored by Cadence Design Systems

With the increase of on-chip storage elements, it has become extremely time consuming to come up with an optimized floorplan with manual methods. Innovus Implementation’s advanced multi-objective placement technology, GigaPlace XL, provides automation to optimize at scale, concurrent placement of macros, and standard cells for multiple objectives like timing, wirelength, congestion, and power. This technology provides an innovative way to address design productivity along with design quality improvements reducing weeks of manual floorplan time down to a few hours.

Click here for more information about Innovus Implementation System

featured paper

Designing highly efficient, powerful and fast EV charging stations

Sponsored by Texas Instruments

Scaling the necessary power for fast EV charging stations can be challenging. One solution is to use modular power converters stacked in parallel. Learn more in our technical article.

Click here to download the technical article

Featured Chalk Talk

Maxim's First Secure Micro with ChipDNA PUF Technology

Sponsored by Mouser Electronics and Maxim Integrated

Most applications today demand security, and that starts with your microcontroller. In order to get a truly secure MCU, you need a root of trust such as a physically unclonable function (PUF). In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis of Maxim Integrated about how the Maxim MAX32520 MCU with PUF can secure your next design.

Click here for more info about Amphenol RF 5G Wireless Connectors