editor's blog
Subscribe Now

Rezence Wireless Charging Takes Steps

There have been a couple of developments in the wireless power world over the last couple months, both involving the new Rezence standard. You may recall that this is the new high-frequency resonant approach, as contrasted with the established lower-frequency Qi approach. We’ve reviewed the differences and proliferating standards before.

While Rezence beat out Qi in terms of establishing a resonant (as opposed to inductive, which is what legacy Qi is) standard, Qi (a resonant version of which is in the works) benefits from established infrastructure and channels. And standards aren’t product. So the Rezence allies have been trying to spin up infrastructure and design enablement so that they can get products on the market. Only then can they say that their approach has been truly proven and validated.

Late last year, they took another step in that direction. WiTricity released a development kit, the WiT-5000C3, to make it easier for designers to leverage the Rezence standard. The kit contains:

  • A full-on reference design for a Class 3 charger (up to 2 smartphones or 1 tablet);
  • Sample PTUs (power transfer units, aka chargers) and PRUs (power receive units, or chargees);
  • Engineering eval tools; and
  • A full set of documents.

WiT-5000C3_system.png

 (Image courtesy WiTricity)

One thing I noticed in the release was a reference to “classes” and “categories.” As in, this design is for a Class 3 charger, compatible with Category 3 devices and with tablets.

I inquired further into what this meant, and WiTricity sent the following tables. You can tell the standards folks had a task of choosing similar but different words for PTUs and PRUs. PTUs come in “classes”; PRUs come in “categories.” There’s no rule linking a particular class number to a category number – not in terms of what mates with what, nor in terms of power level.

Tables.png

As a Class 3 charger, then, it should be able to charge, at a minimum, one Category 4 device (tablet or phablet) and must support the maximum number of devices, two Category 3 units (smartphones). Just so happens that, from a power standpoint, 2x(Category 3) = Category 4…

Meanwhile, the expected merger between the Alliance for Wireless Power (A4WP) and the Power Matters Alliance (PMA) organizations was announced: a letter of intent has been signed, and the deal should complete mid-year.

While this was touted as proving that a “standards war” isn’t necessary, it also represents a blending of two relatively similar approaches. There’s a much bigger gap between the remaining two organizations. And, as far as I can tell, there’s little chance of further diplomacy. Both remaining sides – high- and low-frequency charging – remain firmly committed to their approaches.

You can find out more in the WiTricity dev kit announcementand the merger announcement.

Leave a Reply

featured blogs
Mar 24, 2023
With CadenceCONNECT CFD less than a month away, now is the time to make your travel plans to join us at the Santa Clara Convention Center on 19 April for our biggest CFD event of the year. As a bonus, CadenceCONNECT CFD is co-located with the first day of CadenceLIVE Silicon ...
Mar 23, 2023
Explore AI chip architecture and learn how AI's requirements and applications shape AI optimized hardware design across processors, memory chips, and more. The post Why AI Requires a New Chip Architecture appeared first on New Horizons for Chip Design....
Mar 10, 2023
A proven guide to enable project managers to successfully take over ongoing projects and get the work done!...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored by Synopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser. This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

Current Sense Resistor - WFC & WFCP Series
Sponsored by Mouser Electronics and Vishay
If you are working on a telecom, consumer or industrial design, current sense resistors can give you a great way to detect and convert current to voltage. In this episode of Chalk Talk, Amelia Dalton chats with Clinton Stiffler from Vishay about the what, where and how of Vishay’s WFC and WFCP current sense resistors. They investigate how these current sense resistors are constructed, how the flip-chip design of these current sense resistors reduces TCR compared to other chip resistors, and how you can get started using a Vishay current sense resistor in your next design.
May 11, 2022
38,343 views