editor's blog
Subscribe Now

Harvesting Microwaves

We have just looked at an approach to wireless power transfer using low MHz electromagnetic field oscillations. But such a concept is only “power transfer” if the whole reason for the signal in the first place is to transfer power. If such a signal exists for some other reason – like communications – then doing the exact same thing wouldn’t be power transfer: It would be energy harvesting.

And indeed folks are trying to harvest energy out of all of the waves running rampant through our environment. The issue is efficiency, however, and you don’t really see a lot of practical discussion of this type of harvesting as being on its way to commercialization.

But there are some interesting things going on. And they involve “metamaterials” – artificial matter that can achieve characteristics – like a negative index of refraction or negative permittivity – that aren’t possible in nature. We took a look at some of these a couple years ago.

I have tended to think of metamaterials as the careful stacking and arranging of materials at the nano level; apparently that’s not always the case. Some folks at Duke University created a microwave energy harvester using a macro-sized metamaterial.

The fundamental unit of this “material” is the split-ring resonator. These can be very small, and would need to be on the order of 10s of nanometers across to respond to optical wavelengths, but the one Duke used was not that small: the outer diameter was 40 mm, and the gap was 1 mm. It was tuned for 900-MHz resonance.

Split_ring_resonator.png

 

Image courtesy ??(Wikipedia contributor)

My initial thought was that these were made out of a metamaterial, but no: they’re made out of copper, and an array of these becomes the resonator. They used five of them (5×1 array) in their experiments.

It’s interesting to me that one of these rings bears a remarkable resemblance to the structure that WiTricity uses as source and capture resonators, albeit at lower frequencies. I suspect that’s no accident.

While simulation suggested they might get into the 70% efficiency range, their results were closer to 37%. There wasn’t really an explanation of that discrepancy; I’m going to assume that will be the focus of more work.

You can read more details about their work in their paper (PDF).

Late update: there’s another “out of thin air” technology that’s more than harvesting. It will be the topic of a future piece

Leave a Reply

featured blogs
Sep 16, 2021
I was quite happy with the static platform I'd created for my pseudo robot heads, and then some mad impetuous fool suggested servos. Oh no! Here we go again......
Sep 16, 2021
CadenceLIVE, Cadence's annual user conference, has been a great platform for Cadence technology users, developers, and industry experts to connect, share ideas and best practices solve design... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Gesture Detection for Automotive In-Cabin Applications

Sponsored by Texas Instruments

See how using 60GHz radar for automotive in-cabin gesture is ideal due to its small size and ability to sense through various materials. Applications using gesture control include changing radio stations, answering phone calls, opening windows, and more.

Click to learn more about gesture detection using 60GHz mmWave radar sensors

featured paper

3 key design decisions for any desktop 3D printer design

Sponsored by Texas Instruments

Learn about three important design considerations to take your 3D print design to the next level.

Click to read more

featured chalk talk

IEC 62368-1 Overvoltage Requirements

Sponsored by Mouser Electronics and Littelfuse

Over-voltage protection is an often neglected and misunderstood part of system design. But often, otherwise well-engineered devices are brought down by over-voltage events. In this episode of Chalk Talk, Amelia Dalton chats with Todd Phillips of Littelfuse about the new IEC 623689-1 standard, what tests are included in the standard, and how the standard allows for greater safety and design flexibility.

Click here for more information about Littelfuse IEC 62368-1 Products