editor's blog
Subscribe Now

Breker Supplements Simulation

We’ve talked about Breker’s C-level test generation tools a couple of times in the past. But the context for that discussion was simulation – the tests were run in the virtual domain.

But not all validation happens there. There are several scenarios where hardware platforms contribute to the verification plan. Emulators are one good example, where programmable hardware elements implement newly-designed logic so that extensive testing that might be too slow for simulation – in particular, running software – can be performed.

Likewise, FPGA prototypes can be part of the plan. These are usually faster than an emulator implementation, but they take longer to create since they’re optimized for speed. They’re often used by software writers as a way to test software that will ultimately run on the silicon chip. But such software designers may well be interested in stressing the design with specific uses cases that their software may exercise. So some of the silicon verification can bleed over to them.

Finally, after all of the verification is done, you have an actual chip. (With all the focus on 100%-proof-that-it-works before cutting masks, it’s easy to forget that we’re actually making a real chip.) That chip must be validated to ensure that it works the way the verification plan said it would.

All of these scenarios are now supported by Breker’s TrekSoC-Si product, which complements the existing version. It means that tests generated for simulation can also be applied in all of these other phases of verification and validation.

You can find out more in their release.

Leave a Reply

featured blogs
Sep 17, 2021
Dear BoardSurfers, I want to unapologetically hijack the normal news and exciting feature information that you are accustomed to reading about in the world of PCB Design blogs to eagerly let you know... [[ Click on the title to access the full blog on the Cadence Community s...
Sep 16, 2021
I was quite happy with the static platform I'd created for my pseudo robot heads, and then some mad impetuous fool suggested servos. Oh no! Here we go again......
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Product Update: Complete DesignWare 400G/800G Ethernet IP

Sponsored by Synopsys

In this video product experts describe how designers can maximize the performance of their high-performance computing, AI and networking SoCs with Synopsys' complete DesignWare Ethernet 400G/800G IP solution, including MAC, PCS and PHY.

Click here for more information

featured paper

3 key design decisions for any desktop 3D printer design

Sponsored by Texas Instruments

Learn about three important design considerations to take your 3D print design to the next level.

Click to read more

featured chalk talk

The Wireless Member of the DARWIN Family

Sponsored by Mouser Electronics and Maxim Integrated (now part of Analog Devices)

MCUs continue to evolve based on increasing demands from designers. We expect our microcontrollers to do more than ever - better security, more performance, lower power consumption - and we want it all for less money, of course. In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis from Maxim Integrated about the new DARWIN line of low-power MCUs.

Click here for more information about Maxim Integrated MAX32665-MAX32668 UB Class Microcontroller