editor's blog
Subscribe Now

Closing the Thermal Loop

It’s impossible to design an SoC today without good simulation models. Emphasis on “good.” We’ve always simulated, but, back when mask sets cost less than the GDP of a small country, the actual silicon was the true test of whether the design worked.

Of course, using real silicon to iterate the design was never the goal, but the only way to get good models is to test them against actual silicon – it’s that closed loop that gives you confidence in the model. But that means running a lot of silicon to correlate against the model, which takes time, and, if a mask set isn’t too painful to acquire, well, you might take your chances on an early design with an “OK” model rather than waiting for the models to stabilize.

No longer. Process development goes on long ahead of actual first commercial wafers so that the process and the models can be dialed in properly. Which requires a tight loop between silicon characterization and the simulation tools.

As we’ve noted before, the electrical world is impacted by the mechanical – and notably the thermal – world. You do a lot of work to meet thermal requirements. Mostly it’s so that your circuit will perform within a given set of specs. Also it’s so that it won’t wear out early. Or, more dramatically, explode.

With LEDs in particular, there appears to be yet another reason to manage temperatures: as the temp goes up, the LED brightness goes down.

So while you do your part to keep the temperature where it needs to be, your mechanical counterparts have to do the same thing with the package and board and the box it all goes in.

And how do they do that? Just like you do: simulation. We’ve looked Mentor’s FloTHERM before, both in its more limited –IC version and more generally. Tools like this are used to simulate what happens to the heat as it courses through your system. But how do you know it’s accurate? What models do they use?

And this is where the thermal folks have found themselves: in the same place you electrical folks were years back. With the amount of thermal slop we can tolerate going down, it really makes everyone feel a whole lot better if they know that the models being simulated are accurate. And that means closing the loop with actual physical characterization. Which requires a tester. Which Mentor also has.

And here we digress briefly into the world of, “How should we name our product?” (Indulge me; the inner marketer and language aficionado won’t be silenced.) The unit they have for measuring temperature is called T3ster. My first question was, “Is that pronounced ‘tee-three-ster’?” Turns out no, it’s pronounced “tree-ster”. Never mind that pesky “th” thing in there. It interferes with two other clever devices going on here. The formal name is “Thermal Transient Tester” – 3 Ts, or T3. That would be T3 for those of us without access to superscript. Plus… a 3 is E in, what, hackerlandia? Somewhere out there. So “T3ster” is really “TEster”. All of which makes it too tempting to ignore the annoying fact that most English phonetic clues will point you in the wrong direction. It probably makes more sense given that Hungarian (where this originated prior to acquisition by Mentor) has no “th” sound, so that, if German is any clue, “three” probably ends up being pronounced “tree.” OK, maybe not such a brief digression. Their marketing guys are gonna hate me. Anyway…

The thing about T3ster is that it’s very accurate – up to 0.01 °C. It can also register up to 10,000 measurements per minute, allowing it to capture the shapes of temperature changes as they happen. They appear to have a particular focus on LEDs via their TERALED setup.

Mentor has now provided explicit integration between FloTHERM and T3ster for that critical feedback loop that makes it possible to generate abstracted models for various packages and other configurations. According to them, this is an industry first.

Not only does this provide better confidence, but the abstraction also speeds up the simulation time. Essentially, it allows the creation of thermal verification IP, although no one has signed up to get into that business explicitly.

Ultimately, better confidence in the thermal models translates to better confidence that the electrical design will perform as expected.

More info in their press release

Leave a Reply

featured blogs
Jan 27, 2021
Why is my poor old noggin filled with thoughts of roaming with my friends through a post-apocalyptic dystopian metropolis ? Well, I'€™m glad you asked......
Jan 27, 2021
Here at the Cadence Academic Network, it is always important to highlight the great work being done by professors, and academia as a whole. Now that AWR software solutions is a part of Cadence, we... [[ Click on the title to access the full blog on the Cadence Community site...
Jan 27, 2021
Super-size. Add-on. Extra. More. We see terms like these a lot, whether at the drive through or shopping online. There'€™s always something else you can add to your order or put in your cart '€“ and usually at an additional cost. Fairly certain at this point most of us kn...
Jan 27, 2021
Cloud computing security starts at hyperscale data centers; learn how embedded IDE modules protect data across interfaces including PCIe 5.0 and CXL 2.0. The post Keeping Hyperscale Data Centers Safe from Security Threats appeared first on From Silicon To Software....

featured paper

Speeding Up Large-Scale EM Simulation of ICs Without Compromising Accuracy

Sponsored by Cadence Design Systems

With growing on-chip RF content, electromagnetic (EM) simulation of passives is critical — from selecting the right RF design candidates to detecting parasitic coupling. Being on-chip, accurate EM analysis requires a tie in to the process technology with process design kits (PDKs) and foundry-certified EM simulation technology. Anything short of that could compromise the RFIC’s functionality. Learn how to get the highest-in-class accuracy and 10X faster analysis.

Click here to download the whitepaper

Featured Chalk Talk

Electronic Fuses (eFuses)

Sponsored by Mouser Electronics and ON Semiconductor

Today’s advanced designs demand advanced circuit protection. The days of replacing old-school fuses are long gone, and we need solutions that provide more robust protection and improved failure modes. In this episode of Chalk Talk, Amelia Dalton chats with Pramit Nandy of ON Semiconductor about the latest advances in electronic fuses, and how they can protect against overcurrent, thermal, and overvoltage.

More information about ON Semiconductor Electronic Fuses