industry news
Subscribe Now

Applied Materials’ Next-Generation Defect Review and Classification Technology Improves Yield For Complex 3D Transistors, 1X Nanometer Nodes

  • SEMVision G6 system’s unique multi-dimensional imaging delivers the industry’s highest resolution and image quality
  • Advanced system design and full automation capabilities enable up to 100% faster throughput
  • Purity ADC dynamic machine learning algorithms deliver exceptional defect capture rate, classification accuracy and throughput

SANTA CLARA, Calif., July 8, 2013 – Applied Materials, Inc. today announced a suite of new defect review and classification technologies for its market-leading SEMVision(TM) family of products to accelerate time to yield for leading-edge chip manufacturing at 1X-nm and beyond.  TheApplied SEMVision G6 defect analysis system combines unprecedented high-resolution, multi-dimensional imaging capabilities with revolutionary machine learning intelligence of the Purity(TM) Automatic Defect Classification (ADC) system that sets new performance benchmarks and brings first-of-a-kind DR SEM technology to the semiconductor industry.

“The capabilities of current defect review and analysis tools are being challenged by the requirements of emerging 1X nm design rules and 3D architectures,” said Itai Rosenfeld, corporate vice president and general manager of Applied’s Process Diagnostics and Control business unit. “Our SEMVision G6 and Purity ADC solve the industry’s toughest process control problems for defect review with unmatched imaging technologies and a powerful analysis tool for fast and accurate classification. Multiple market-leading customers have already installed SEMVision G6 and Purity ADC systems and are benefiting from up to 100% faster throughput, advanced imaging and best-in-class classification quality for improved yields.”

The SEMVision G6 system’s resolution is a 30% improvement over the previous generation, making it the highest available in the industry. This capability and the system’s unique e-beam tilt angle make the G6 the industry’s superior, field-proven DR SEM for finding, identifying and analyzing defects in 3D FinFET and high aspect ratio structures at 1Xnm nodes.  The system’s advanced detection assembly and sophisticated processing make possible high-quality topographical images of tiny and shallow defects. High dynamic range detection, collection of back-scattered electrons, and energy filtering enable high aspect ratio imaging. High-energy imaging makes possible “see through” penetration that reveals defects in underlying layers.

The Purity ADC’s dynamic machine learning algorithms analyze and classify defects, ensuring accuracy, quality and consistency to enable stable process control and rapid and reliable excursion detection. Smart machine learning algorithms also make possible the separation of real defects from the large number of nuisance defects or false alarms, a challenge that is growing with scaling and device complexity.  By establishing a proven intelligent analysis and classification process, Purity ADC gives customers the confidence for the first time to rely on an automatic review system to correctly and quickly identify classes of defects in a production environment and accelerate time-to-yield.  

Applied Materials, Inc. (Nasdaq:AMAT) is the global leader in providing innovative equipment, services and software to enable the manufacture of advanced semiconductor, flat panel display and solar photovoltaic products. Our technologies help make innovations like smartphones, flat screen TVs and solar panels more affordable and accessible to consumers and businesses around the world. Learn more at www.appliedmaterials.com.

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

ROHM Automotive Intelligent Power Device (IPD)
Modern automotive applications require a variety of circuit protections and functions to safeguard against short circuit conditions. In this episode of Chalk Talk, Amelia Dalton and Nick Ikuta from ROHM Semiconductor investigate the details of ROHM’s Automotive Intelligent Power Device, the role that ??adjustable OCP circuit and adjustable OCP mask time plays in this solution, and the benefits that ROHM’s Automotive Intelligent Power Device can bring to your next design.
Feb 1, 2024
12,495 views