industry news
Subscribe Now

X-FAB Expands 180nm XH018 Process with New Isolation Class for Enhanced SPAD Integration

New module enables more compact designs resulting in reduced chip size

Tessenderlo-Ham, Belgium, June 19, 2025 – X-FAB Silicon Foundries SE, the leading analog/mixed-signal and specialty foundry, has released a new isolation class within its 180nm XH018 semiconductor process. Designed to support more compact and efficient single-photon avalanche diode (SPAD) implementations, this new isolation class enables tighter functional integration, improved pixel density, and higher fill factor – resulting in smaller chip area.

SPADs are critical components in a wide range of emerging applications, including LiDAR for autonomous vehicles, 3D imaging, depth sensing in AR/VR systems, quantum communication and biomedical sensing. X-FAB already offers several SPAD devices built on its 180nm XH018 platform, with active areas ranging from 10µm to 20µm. This includes a near-infrared optimized diode for elevated photon detection probability (PDP) performance.

To enable high-resolution SPAD arrays, a compact pitch and elevated fill factor are essential. The newly released module ISOMOS1, a 25V isolation class module, allows for significantly more compact transistor isolation structures, eliminating the need for an additional mask layer and aligning perfectly with X-FAB’s other SPAD variants.

The benefits of this enhancement are evident when comparing SPAD pixel layouts. In a typical 4×3 SPAD array with 10×10µm² optical areas, the adoption of the new isolation class enables a ~25% reduction in total area and boosts fill factor by ~30% compared to the previously available isolation class. With carefully optimized pixel design, even greater gains in area efficiency and detection sensitivity are achievable.

X-FAB’s SPAD solution has been widely used in applications that require direct Time-of-Flight, such as smartphones, drones, and projectors. This new technological advancement directly benefits these applications in which high-resolution sensing with a compact footprint is essential. It enables accurate depth sensing in multiple scenarios, including industrial distance detection and robotics sensing, for example, by protecting the area around a robot and avoiding collisions when robots are working as cobots. Beyond increasing performance and integration density, the new isolation class opens up opportunities for a broader range of SPAD-based systems requiring low-noise, high-speed single-photon detection within a compact footprint.

Heming Wei, X-FAB’s Technical Marketing Manager for Optoelectronics, explains: “The introduction of a new isolation class in XH018 marks an important step forward for SPAD integration. It enables tighter layouts and better performance, while allowing for more advanced sensing systems to be developed using our proven, reliable 180 nanometer platform.”

Models and PDKs, including the new ISOMOS1 module, are now available, supporting efficient evaluation and development of next-generation SPAD arrays. X-FAB will be exhibiting at Sensors Converge 2025 in Santa Clara, California (June 24–26) at booth #847, showcasing its latest sensor technologies.

Leave a Reply

featured blogs
Jul 11, 2025
Can you help me track down the source of the poem titled 'The African Tigger is Fading Away'?...

Libby's Lab

Libby's Lab - Scopes out Eaton EHBSA Aluminum Organic Polymer Capacitors

Sponsored by Mouser Electronics and Eaton

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Eaton EHBSA Aluminum Organic Polymer Capacitors, available at Mouser.com! These capacitors are ideal for high-reliability and long life in demanding applications. Keep your circuits charged and your ideas sparking!

Click here for more information

featured paper

AI-based Defect Detection System that is Both High Performance and Highly Accurate Implemented in Low-cost, Low-power FPGAs

Sponsored by Altera

Learn how MAX® 10 FPGAs enable real-time, high-accuracy AI-based defect detection at the industrial edge without a GPU. This white paper explores a production-proven solution that delivers 24× higher accuracy, 488× lower latency, and 20× lower power than traditional approaches, with a compact footprint ideal for embedded vision systems.

Click to read more

featured chalk talk

Improving the Cockpit Computer using Companion Microcontroller
Sponsored by Infineon
Companion microcontrollers are a vital element of today’s complex automotive designs. In this episode of Chalk Talk, Matthew Goodavish from Infineon and Amelia Dalton investigate how the architectural evolution in automotive design has encouraged the need for companion microcontrollers, the role that safety islands play in the development of these systems, and the core system benefits that companion MCUs bring to these kinds of designs.
Jul 10, 2025
2,485 views