industry news
Subscribe Now

UK collaboration unveils Bizen® a transistor wafer process technology promising to slash lead times, wafer area and process layers while increasing speed, reducing power and increasing gate density over CMOS

Search For The Next’s technology uses quantum tunnel mechanics enabling complex ICs to be made competitively in existing ‘previous-generation’ fabs

Nottingham, UK, October 2019: A UK collaboration between Nottingham-based start-up, Search For The Next (SFN) and Glenrothes-based Semefab may be set to disrupt the semiconductor industry by implementing a fundamental change at transistor level reaching back five decades to the early bipolar IC era before CMOS became mainstream, using a new process called Bizen. Bizen applies the principles of quantum tunnel mechanics to any computing or power technology. When compared to CMOS, Bizen results in a five-fold lead time reduction – down from 15 weeks to just three weeks. Moreover, the new process achieves a three-fold increase in gate density that produces a matching three-fold reduction in die size. Lastly, Bizen halves the number of process layers required. All this is achieved while equalling or bettering the speed and low power capabilities offered by current CMOS devices.

David Summerland, CEO SFN explains: “The CMOS processing industry is hitting a brick wall as shrinking geometries bash up against the laws of physics. We went back to the very beginning and found a way to commercialize quantum tunnel mechanics in silicon or wide bandgap device manufacture. The result is ‘Bizen’ – Bipolar/Zener – which retains the advantages of traditional bipolar processing yet removes the disadvantages by using Zener quantum tunnel mechanics.  This results in lower dynamic power, higher speed and higher gate density, halving the number of process layers required, reducing material use by two thirds, and slashing manufacturing time. This allows any fab to become a category killer.”

Bipolar technology has traditionally been limited by its requirement for resistors which have the disadvantage of becoming large in size with low power devices. In contrast, a Bizen transistor uses quantum tunnel technology, enabling designers to eliminate the resistor – as with MOS devices – and take advantage of the now-controllable current. This enables the realization of a very low power circuit in which the transistor is Normally-On but not saturated, and is controlled by an isolated tunnel connection, rather than a direct metal contact to the base well, as used in traditional bipolar transistors.

Therefore, Bizen technology lets designers create a simpler circuit with far fewer layers and increased logic density. For example, the number of layers needed for a Bizen device range from four to eight for devices supporting low to high voltage operation, compared with ten to seventeen for CMOS. The power consumption drops, the size drops and the integration and speed increases, allowing complex devices to be manufactured in the large geometry fabs that exist in the UK.

Since mid-2017, SFN has been in collaboration with Semefab, the well-known, indigenous, privately-owned semiconductor and MEMS fab based in Glenrothes, Scotland, for process development and qualification leading to device production. Semefab’s CEO, Allan James comments: ””If Bizen can be adopted by the industry, an important prize given the reduction in die area at a given technology node comparing a Bizen and CMOS logic implementation would be the ability to wind back the Moores’ Law clock by 10 years or more and bring many ‘previous-generation’ wafer fabs back into mainstream manufacture.”

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

VITA RF Product Portfolio: Enabling An OpenVPX World
Sponsored by Mouser Electronics and Amphenol
Interoperability is a very valuable aspect of military and aerospace electronic designs and is a cornerstone to VITA, OpenVPX and SOSA. In this episode of Chalk Talk, Amelia Dalton and Eddie Alexander from Amphenol SV explore Amphenol SV’s portfolio of VITA RF solutions. They also examine the role that SOSA plays in the development of military and aerospace systems and how you can utilize Amphenol SV’s VITA RF solutions in your next design.
Oct 25, 2023
23,275 views