industry news
Subscribe Now

Towards Higher Nanopatterning Resolution with Molecules that fill Nanogaps Better

Researchers from Japan uncover molecular properties that help fill nanometer-sized gaps in the nanopatterning mold for ultraviolet nanoimprint lithography
Ultraviolet nanoimprint lithography (UV-NIL) is a method of creating patterns at the nanoscale with widespread applications in optoelectronics, photonics, and biology due to its low cost and scalability. However, current UV-NIL resolution is limited below 10 nm, and higher resolutions require a better understanding of the UV-NIL process. In a new study, researchers from Tokyo University of Science, Japan use simulations to unveil molecular properties essential for fine UV-NIL patterning at higher resolutions.
 
In modern science, nanopatterning is an essential technique for the fabrication of compact devices for electronic, optical, photonic, and biological applications. In this regard, ultraviolet nanoimprint lithography (UV-NIL) shows much promise owing to its low cost and scalability. The technology is based on creating nanopatterns using UV light on a light-sensitive material called “resist” deposited on a substrate. After depositing the resist on the substrate, a mold nanopattern is pressed into the it. The resist fills this mold and is then cured using UV light, producing the desired nanopattern.
While UV-NIL is a well-explored technique, with simulations providing deep insights into the process, it is still limited to resolutions below 10 nm. This is because resolutions below 10 nm require an understanding of material features at atomic scales. Unfortunately, such feature cannot be explored with traditional simulations, which assume matter to be continuous. While previous studies have looked at polymer-size effects on UV-NIL, behaviors of the short-chain resist molecules during the filling process remain unclear.
To address this issue, a research group led by Associate Professor Tadashi Ando from Tokyo University of Science (TUS), Japan, performed molecular dynamics (MD) simulations to elucidate the molecular features that govern the filling process at nanoscales. In their study published on July 25, 2022, in Nanomaterials, Dr. Ando and his colleague simulated the process of the filling of 2-nm and 3-nm mold trenches for four different resists, namely N-vinyl-2-pyrrolidone (NVP), 1,6-Hexanediol diacrylate (HDDA), Tri(propylene glycol) diacrylate (TPGDA), Trimethylolpropane triacrylate (TMPTA), and 2,2-Dimethoxy-2-phenylacetophenone (DMPA). Of these, HDDA, NVP, TPGDA, and TMPTA were photopolymers while DMPA was a polymerization initiator. Specifically, the team explored the effects of compositions and viscosities of these molecules on the UV-NIL filling process.
“The simulation results showed that HDDA, NVP/TPGDA/TMPTA, and TPGDA with viscosities lower than 10 mPa.s were able to fill the 2-nm and 3-nm trench widths, while the more viscous and bulkier TMPTA could not,” highlights Dr. Ando. Specifically, molecules with viscosity higher than 92 mPa.s could not fill the trenches. Additionally, the researchers compared the two linear-shaped photopolymers, HDDA and TPGDA. The simulations revealed that TPGDA was relatively more flexible, making it more likely to undergo intramolecular crosslinking during UV-curing. Furthermore, these simulation results were in good agreement with empirical rules derived from experiments.
With these remarkable insights, the researchers are excited about the future prospects of UV-NIL. “The findings of our study could provide us useful information for guiding the future selection and design of optimized resists for fine nanopatterning at sub-10 nm resolution with UV-NIL,” says Dr. Ando, excited.
We certainly hope his vision is realized soon!
Reference                     
Title of original paper: Molecular Dynamics Study on Behavior of Resist Molecules in UV-Nanoimprint Lithography Filling Process
Journal: Nanomaterials
About The Tokyo University of Science
Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan’s development in science through inculcating the love for science in researchers, technicians, and educators.
With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society”, TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today’s most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.
 
About Associate Professor Tadashi Ando from Tokyo University of Science
Tadashi Ando is currently an Associate Professor of Advanced Engineering in the Department of Applied Electronics at the Tokyo University of Science (TUS), Japan. He received his Ph.D. from TUS Graduate School in 2004. His chief areas of interest are simulations of chemical compounds, biophysics, and protein folding simulations. A well-respected researcher, Dr. Ando has 42 publications to his credit.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Autonomous Mobile Robots
Sponsored by Mouser Electronics and onsemi
Robotic applications are now commonplace in a variety of segments in society and are growing in number each day. In this episode of Chalk Talk, Amelia Dalton and Alessandro Maggioni from onsemi discuss the details, functions, and benefits of autonomous mobile robots. They also examine the performance parameters of these kinds of robotic designs, the five main subsystems included in autonomous mobile robots, and how onsemi is furthering innovation in this arena.
Jan 24, 2024
13,494 views