industry news
Subscribe Now

The Predictive Power of Engineering Models for Printed Circuit Boards

A new design tool for electronics manufacturers could reduce product failures and boost productivity for printed circuit boards

CAMBRIDGE, MA—January 20, 2022—Printed circuit board (PCB) manufacturers are boosting their investment in inspection, test and analytics to meet the increasingly stringent demands for reliability. The result is a growing demand for predictive design techniques that enable engineers to hone manufacturing performance and reconfigure operations to be more efficient and reduce waste.

Predictive design is about analyzing current and historical data and generating a model to help predict future outcomes.

Now, a new predictive design tool, developed by Draper, has been tested and validated to show it can predict material failure rates and help determine design requirements for printed circuit boards and similar products. In tests, engineers found that the tool accurately predicted methods to reduce and eliminate laminate crack initiation and propagation on a printed circuit board.

The study, prepared for IPC APEX EXPO 2022, was conducted by designing printed circuit boards, using different configurations and materials, and subjecting the boards to environmental stresses and other tests. Using principles of predictive design, engineers developed data sets to guide them. One data set included tests of the PCB materials for such attributes as fracture toughness and thermal conductivity. Another set included detailed design characteristics of the PCB itself.

With the data, the engineers developed a virtual test bed, called a finite element analysis (FEA) computer-aided model, and used it to run scenarios of various PCBs. The FEA model successfully predicted a 50 percent decrease in internal stress that would reduce or completely eliminate PCB laminate cracks. 

Just by tweaking the kind of materials and design layouts of a printed circuit board, the team was able to reduce the number, kinds and severity of defects in the board when very minor design changes are made. In their quest to develop a new model, the team, led by Wade Goldman of Draper, capitalized on material characterization testing data and detailed design characteristics of the PCB itself to build a robust model.

“The FEA model allows us to move attributes around to reduce the number and likelihood of cracks in the PCB,” Goldman says. “If each design works as expected, PCB designers and manufacturers are no longer limited to manufacturing by trial and error. Instead, they can spend their time evaluating design changes that might be useful in order to reduce defects and not change their processes.”

The model arrives at an opportune time for the technology industry, Goldman adds. “These days it’s all about designing higher density PCBs. As a result, interconnects are becoming smaller, which introduces fragility, and the industry is making more material choices to make higher density interconnects work. You need a predictive design tool to support that effort.”

The engineers stated the predictive design tool they developed and implemented in this study has been validated and is expected to provide PCB designers with a model for determining design rules for future products. Goldman says, “With this new capability, we have taken a big step in being able to manufacture higher quality printed circuit boards.” 

Goldman and his Draper colleagues Hailey Jordan and Curtis Leonard received an honorable mention at the IPC APEX EXPO 2021 for a paper on a similar topic, “Analyzing Printed Circuit Board Voiding and other Anomalies when Requirements Covering the Anomalies are Vague.”

Draper

At Draper, we believe exciting things happen when new capabilities are imagined and created. Whether formulating a concept and developing each component to achieve a field-ready prototype or combining existing technologies in new ways, Draper engineers apply multidisciplinary approaches that deliver new capabilities to customers. As a nonprofit engineering innovation company, Draper focuses on the design, development and deployment of advanced technological solutions for the world’s most challenging and important problems. We provide engineering solutions directly to government, industry and academia; work on teams as prime contractor or subcontractor; and participate as a collaborator in consortia. We provide unbiased assessments of technology or systems designed or recommended by other organizations—custom designed, as well as commercial-off-the-shelf. www.draper.com

Leave a Reply

featured blogs
Apr 19, 2024
Data type conversion is a crucial aspect of programming that helps you handle data across different data types seamlessly. The SKILL language supports several data types, including integer and floating-point numbers, character strings, arrays, and a highly flexible linked lis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

GaN Solutions Featuring EcoGaN™ and Nano Pulse Control
In this episode of Chalk Talk, Amelia Dalton and Kengo Ohmori from ROHM Semiconductor examine the details and benefits of ROHM Semiconductor’s new lineup of EcoGaN™ Power Stage ICs that can reduce the component count by 99% and the power loss of your next design by 55%. They also investigate ROHM’s Ultra-High-Speed Control IC Technology called Nano Pulse Control that maximizes the performance of GaN devices.
Oct 9, 2023
24,943 views