industry news
Subscribe Now

STMicroelectronics Introduces Bluetooth® 5.2-Certified SoC, Extending Range, Throughput, Reliability and Security

Geneva, October 7, 2020 – STMicroelectronics has revealed its latest BlueNRG-LP Bluetooth® LE System-on-Chip (SoC), which leverages the latest Bluetooth features to increase communication range, raise throughput, strengthen security, and save power. The ultra-low-power radio is optimized to consume as little as 3.4mA in receive mode, just 4.3mA when transmitting, and less than 500nA quietly waiting for wake-up events, cutting by half the size of battery needed in most applications and prolonging runtime.

BlueNRG-LP, the 3rd-generation Bluetooth SoC from ST, is the world’s first Bluetooth LE 5.2-certified SoC to support concurrent connections up to 128 nodes, enabling seamless low-latency control and monitoring large numbers of connected devices, for instance from a stylish and intuitive smartphone app.

Combined with high RF-output power, which is programmable up to +8dBm, and excellent RF sensitivity up to -104dBm, the BlueNRG-LP radio SoC can now natively cover a much larger area in beacons, smart lighting, gaming, building automation, industrial and tracking applications. Furthermore, the communication range can be extended without limit by seamlessly adding Bluetooth LE Mesh, now fully certified and available as part of the comprehensive BlueNRG software and hardware ecosystem.

In addition, BlueNRG-LP supports Bluetooth Long Range mode, which uses coded physical layers (Coded PHY) with Forward Error Connection (FEC) to extend radio-communication range up to hundreds of meters and increase reliability, as well as GATT (generic attribute) caching to connect quickly and efficiently.

BlueNRG-LP comes with ST’s third-generation Bluetooth Low Energy protocol stack certified to Core Specification 5.2 and designed to match its ultra-low-power architecture. The stack is provided as a free-of-charge and compiler-independent linkable library supported by multiple Integrated Development Environments (IDEs) and is optimized for small footprint, modularity, low latency, interoperability, and lifetime over-the-air upgradability. It supports features such as extended advertising and scanning, high-duty-cycle non-connectable advertising, extended packet length, and 2Mbit/s throughput.

In addition BlueNRG-LP supports L2CAP Connection-Oriented Channel (CoC), which eases large bidirectional data transfers, multi-role simultaneous connectivity, and Channel Selection Algorithm #2 (CSA #2), which permits robust connections in noisy environments such as home, building, or industrial networks.

Enhanced security mechanisms included in the integrated Arm® Cortex®-M0+ microcontroller (MCU) comprise a secure bootloader, readout protection for the entire 256KB embedded flash, a 48-bit unique ID, as well as customer key storage, true Random-Number Generator (RNG), hardware public-key accelerator (PKA), and a 128-bit AES cryptographic co-processor. The highly efficient processing unit executes code at up to 64MHz, consuming an amazingly tiny 18µA/MHz, and features industry-standard digital interfaces, multi-channel 12-bit ADC, an analog microphone interface with programmable gain amplifier, user and system timers and watchdog, and up to 31 5V-tolerant user-programmable I/O pins.

The BlueNRG-LP SoC also integrates an embedded RF balun, DC/DC converter, and capacitors for the HSE (High-Speed External) oscillator and internal low-speed ring oscillator, minimizing bill-of-materials (BOM) costs and simplifying circuit design.

BlueNRG-LP is available in a choice of 5mm x 5mm QFN32, 6mm x 6mm QFN48, and a miniature 3.14mm x 3.14mm WLCSP49 wafer-level package. With 32KB or 64KB RAM and a choice of temperature range up to 85°C or 105°C, designers get extra flexibility to choose a configuration that best meets their needs. The devices are covered by ST’s 10-year industrial longevity commitment, assuring users of long-term parts availability.

BlueNRG-LP SoCs are in production now, in QFN48, priced from below $1.00 for volume orders.

Please visit www.st.com/bluenrg-lp-pr for more information.

You can also read our blogpost at https://blog.st.com/bluenrg-lp/

Leave a Reply

featured blogs
Jan 15, 2021
I recently saw (what appears at first glance to be) a simple puzzle involving triangles. But is finding the solution going to be trickier than I think?...
Jan 15, 2021
It's Martin Luther King Day on Monday. Cadence is off. Breakfast Bytes will not appear. And, as is traditional, I go completely off-topic the day before a break. In the past, a lot of novelty in... [[ Click on the title to access the full blog on the Cadence Community s...
Jan 14, 2021
Learn how electronic design automation (EDA) tools & silicon-proven IP enable today's most influential smart tech, including ADAS, 5G, IoT, and Cloud services. The post 5 Key Innovations that Are Making Everything Smarter appeared first on From Silicon To Software....
Jan 13, 2021
Testing is the final step of any manufacturing process, and arguably the most important, and yet it can often be overlooked.  Releasing a poorly tested product onto the market has destroyed more than one reputation for quality, and this is even more important in an age when ...

featured paper

Speeding Up Large-Scale EM Simulation of ICs Without Compromising Accuracy

Sponsored by Cadence Design Systems

With growing on-chip RF content, electromagnetic (EM) simulation of passives is critical — from selecting the right RF design candidates to detecting parasitic coupling. Being on-chip, accurate EM analysis requires a tie in to the process technology with process design kits (PDKs) and foundry-certified EM simulation technology. Anything short of that could compromise the RFIC’s functionality. Learn how to get the highest-in-class accuracy and 10X faster analysis.

Click here to download the whitepaper

featured chalk talk

Nordic Cellular IoT

Sponsored by Mouser Electronics and Nordic Semiconductor

Adding cellular connectivity to your IoT design is a complex undertaking, requiring a broad set of engineering skills and expertise. For most teams, this can pose a serious schedule challenge in getting products out the door. In this episode of Chalk Talk, Amelia Dalton chats with Kristian Sæther of Nordic Semiconductor about the easiest path to IoT cellular connectivity with the Nordic nRF9160 low-power system-in-package solution.

Click here for more information about Nordic Semiconductor nRF91 Cellular IoT Modules