industry news
Subscribe Now

Sensera’s MEMS Mimic Human Organs Through Bioengineering

Woburn, MA, June 4, 2018 – Sensera Inc., a leading provider of MEMS devices, isadapting its technology for new applications in bioengineering. The company’s MEMS, or MicroElectroMechanical Systems, technology is now being used at Harvard University in the creation of microfluidic devices, which mimic the functions of living human organs, including the lung, intestine, kidney, skin, bone marrow and blood-brain barrier.

“Sensera is a key partner providing critical microdevice component fabrication, which enables our growing applications in precision medicine and personalized health,” said Dr. Richard Novak, Senior Staff Engineer at Harvard University’s Wyss Institute for Biologically Inspired Engineering. “These microchips, called ‘organs-on-chips’, offer a potential alternative to traditional animal testing. Each organ-on-chip comprises apolymeric membrane that contains hollow channels lined by living human cells.”

“These hollow, microfluidic channels carry fluids in a way that accurately mimics various functions of the human body, including the respiratory, circulatory and digestive systems. Mechanical forces can be applied to emulate the physical microenvironments of living organs, including breathing motions in the lung and peristalsis-like deformations in the intestine,” Dr. Novak explained.

For Wyss Institute and other customers, Sensera provides molds to manufacture the polymeric membranes that are assembled in the organ-on-a-chip microfluidic devices.Ralph Schmitt, CEO of Sensera Inc., said, “Manufacturing these molds is a new challenge for us. We’ve had to adapt our traditional MEMS processes and implement a very stringent quality management system that meets the demands of biomedical applications. Through our collaboration with the Wyss Institute, we now have multiple customers engaged in this technology.”

“Sensera has been able to deliver consistent quality while meeting challenging specifications,” Dr. Novak added.

The success of Sensera’s involvement in the microfluidic device market is supported by the fact that it is ISO 9001 certified and is working towards its ISO 13485 certification. “These types of MEMS-based products are exciting,” Schmitt said. “It’s a high-growth market space in precision medical technology. We are pleased to be able to offer such unique capabilities for customers impacting the health of people worldwide.”

About Sensera
Sensera Inc. (MicroDevices) is a designer and manufacturer of specialized high-performance sensors, and modules. Sensera’s core expertise in MicroElectroMechanical Systems (MEMS) based technologies is bringing custom devices from concept to market. More information on www.sensera.com

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Exploring the Potential of 5G in Both Public and Private Networks – Advantech and Mouser
Sponsored by Mouser Electronics and Advantech
In this episode of Chalk Talk, Amelia Dalton and Andrew Chen from Advantech investigate how we can revolutionize connectivity with 5G in public and private networks. They explore the role that 5G plays in autonomous vehicles, smart traffic systems, and public safety infrastructure and the solutions that Advantech offers in this arena.
Apr 1, 2024
3,408 views