industry news
Subscribe Now

Scientists from the Gwangju Institute of Science and Technology Reveal Ultrafast Melting Dynamics in Matter Heated to Extreme Temperatures

Femtosecond X-ray snapshots of warm dense copper electrons reveal elusive phenomena predicted over a decade ago

GWANGJU, South Korea, Jan. 10, 2022 /PRNewswire/ — Intense laser pulses lasting only femtoseconds (10-15 s) can create extreme states of matter usually found inside planets and stars. Conventional physical models, however, are unable to describe the electron dynamics in such states. Scientists from the Gwangju Institute of Science and Technology in Korea have now explored non-equilibrium dynamics in copper electrons heated to temperatures over 20,000 K, presenting findings that may open new doors for fusion, laser cutting, and nanosurgery.

Ordinary matter behaves very differently when subjected to extreme temperatures and pressures, such as that inside stellar and planetary cores. Conventional rules of condensed matter physics and plasma physics are not applicable in such scenarios. In particular, an extreme state known as “warm dense matter” (WDM) straddles the boundary of condensed matter physics and plasma physics.

One might think that such states can never be created in a terrestrial setting. But, in fact, short laser pulses that are only femtoseconds (10-15 s, or a quadrillionth of a second) long are intense enough to recreate such conditions in a laboratory! Conventional physical models that describe such states typically assume that electrons excited by the laser pulse attain equilibrium within tens of femtoseconds while the ions remain “cold.” However, in doing so, the non-equilibrium dynamics of the electrons are completely disregarded.

To explore this non-equilibrium dynamics under extreme conditions, a team of researchers led by Associate Professor Byoung Ick Cho from the Gwangju Institute of Science and Technology in Korea studied the WDM state for copper created by using intense laser pulses. The optical pulse excitation created copper electrons with a temperature ~ 20,000 K, which is similar to that of a giant planet’s core. Then, right when the copper sample was about to melt, the researchers took snapshots of the electrons using ultrafast x-ray pulses from an x-ray free electron laser (XFEL). This allowed them to analyze what happens in noble metals, such as copper, when their bonding electrons are highly excited and the metals are about to melt. The results of the study were published in Physical Review Letters.

One remarkable observation was that, when heated quickly, the bonds between copper atoms first hardened for about one trillionth of a second (10−12 s) before melting. Put simply, the sample solidified before turning into liquid! The team carried out detailed theoretical analysis backed by simulations, which revealed that while some electrons were excited to higher energies at such high temperatures, some experienced a stronger attraction towards the nucleus. “This phenomenon was, in fact, predicted about a decade ago, but we have now managed to observe it directly for the first time,” comments Prof. Cho. This can improve our understanding of extraordinary material properties under extreme conditions and their underlying mechanisms.

These findings could be applied in contexts where materials are subjected to extremely high pressures and temperatures. “By capturing the precise moment when a material starts to melt or vaporize, we can generate new phases of matter or energy, which would be relevant to fields such as fusion, laser machining, and even nanosurgery,” speculates Prof. Cho.

Who would’ve thought that understanding the interior of stars could have such practical terrestrial applications?

Reference
Title of original paper: Investigation of Nonequilibrium Electronic Dynamics of Warm Dense Copper with Femtosecond X-Ray Absorption Spectroscopy
Journal: Physical Review Letters
DOI: https://doi.org/10.1103/PhysRevLett.127.175003

About the Gwangju Institute of Science and Technology (GIST)
Website: http://www.gist.ac.kr/

Leave a Reply

featured blogs
May 26, 2022
Introducing Synopsys Learning Center, an online, on-demand library of self-paced training modules, webinars, and labs designed for both new & experienced users. The post New Synopsys Learning Center Makes Training Easier and More Accessible appeared first on From Silico...
May 25, 2022
The Team RF "μWaveRiders" blog series is a showcase for Cadence AWR RF products. Monthly topics will vary between Cadence AWR Design Environment release highlights, feature videos, Cadence... ...
May 25, 2022
There are so many cool STEM (science, technology, engineering, and math) toys available these days, and I want them all!...
May 24, 2022
By Neel Natekar Radio frequency (RF) circuitry is an essential component of many of the critical applications we now rely… ...

featured video

Building safer robots with computer vision & AI

Sponsored by Texas Instruments

Watch TI's demo to see how Jacinto™ 7 processors fuse deep learning and traditional computer vision to enable safer autonomous mobile robots.

Watch demo

featured paper

Intel Agilex FPGAs Deliver Game-Changing Flexibility & Agility for the Data-Centric World

Sponsored by Intel

The new Intel® Agilex™ FPGA is more than the latest programmable logic offering—it brings together revolutionary innovation in multiple areas of Intel technology leadership to create new opportunities to derive value and meaning from this transformation from edge to data center. Want to know more? Start with this white paper.

Click to read more

featured chalk talk

ROHM Automotive LED Driver IC

Sponsored by Mouser Electronics and ROHM Semiconductor

There has been a lot of innovation in the world of automotive designs over the last several years and this innovation also includes the LED lights at the rear of our vehicles. In this episode of Chalk Talk, Amelia Dalton chats with Nick Ikuta from ROHM Semiconductor about ROHM’s automotive LED driver ICs. They take a closer look at why their four channel outputs, energy sharing function, and integrated protection functions make these new driver ICs a great solution for rear lamp design.

Click here for more information about ROHM Semiconductor Automotive Lighting Solutions