industry news
Subscribe Now

Renesas RA Family Adds Ultra-Low Power RA2L1 MCU Group with Advanced Capacitive Touch Sensing for Cost-Effective, Energy-Efficient IoT Node HMI Applications

32-bit Arm Cortex-M23-based MCUs Offer Best-in-Class Power Consumption with Flexible Power Modes for Lower Average Power in Multiple Applications
Düsseldorf, December 2, 2020  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today announced the expansion of its 32-bit RA2 Series microcontrollers (MCUs) with 20 new RA2L1 Group MCUs, increasing the RA Family to 66 MCUs. The general-purpose RA2L1 MCUs use the Arm® Cortex®-M23 core operating up to 48 MHz. The RA2L1 MCUs are supported by the easy-to-use Flexible Software Package (FSP) and Renesas’ partner ecosystem, which offers software and hardware building block solutions that work out-of-the-box. The ultra-low power and innovative touch interface of the RA2L1 MCUs make them ideal for home appliance, industrial and building automation, medical and healthcare, and consumer human-machine-interface (HMI) IoT applications.
The RA2L1 MCUs are designed for ultra-low power consumption, with several integrated features to lower BOM costs, including capacitive touch sensing, embedded flash memory densities up to 256 KB, SRAM at 32 KB, analog, communications, and timing peripherals, and safety and security functions. In many battery-powered applications, the MCU spends most of the time in a low-power standby mode waiting for an internal or external event to wake-up the CPU and process data, make decisions and communicate with other system components.
When benchmarked for power consumption, the RA2L1 MCU was certified with an EEMBC® ULPMark score of 304 at 1.8V, verifying its best-in-class power rating. Users can now minimize power consumption close to the standby levels to extend battery life.
“Continuing the rollout of the RA MCU Family, I am pleased to announce the expansion of the general-purpose RA2 Series for HMI IoT applications,” said Roger Wendelken, Senior Vice President of Renesas’ IoT and Infrastructure Business Unit. “The RA2L1 MCUs were designed from the ground-up to optimize for lowest-standby power, employing an advanced power and clock gating feature, and integrate our second-generation capacitive touch sensing unit with advanced and highly differentiated features.”
The advanced capacitive touch IP in the RA2L1 MCUs provides enhanced operability for a variety of touch and touchless system implementations. For example, it supports sensing through acrylic or glass panels more than 10 mm thick, which is enough for use in household equipment with thick doors or partitions. It also implements proximity sensing (hovering) and 3D gestures. This accommodates hygiene or safety limitations. The RA2L1’s capacitive touch noise tolerance meets the requirements of IEC EN61000-4-3 level 4 (radiated) and EN61000-4-6 level 3 (conducted) to assure reliable operation with minimal sensing errors.
Key Features of the RA2L1 MCU Group
    • 48 MHz Arm Cortex-M23 CPU core
    • Support for wide operating voltage range: 1.6V – 5.5V
    • Ultra-low power consumption delivering an operating current of 64 μA/MHz and software standby current of 250 nA with less than 5 µs fast wakeup

  • Employs Renesas’ 110nm low-power process for active and sleep/standby modes and special power-down modes designed for battery driven applications
  • Flexible power modes achieve lower average power for multiple applications
  • Integrated next generation innovative capacitive touch sensing unit with no external components required, lowering BOM costs
  • Enables system costs reduction with on-chip peripheral functions, including a high precision (1.0%) high-speed oscillator, temperature sensor, and multiple power supply interface ports
  • Background operation data flash supporting 1 million erase/program cycles
  • Scalable from 48-pin to 100-pin LQFP packages
 
The RA2L1 MCUs also offer an IEC60730 self-test library and feature integrated safety functions that provide confirmation of normal operation. Customers can easily use these safety functions to perform MCU self-diagnostics. In addition, the RA2L1 includes an AES cryptography accelerator, true random number generator (TRNG) and memory protection units that provide the fundamental blocks to develop a secure IoT system.
The RA2L1 MCUs with Flexible Software Package (FSP) allows customers to re-use their legacy code and combine it with software from partners across the vast Arm ecosystem to speed implementation of complex connectivity and security functions. The FSP includes FreeRTOS and middleware, offering a premium device-to-cloud option for developers. These out-of-box options can be easily replaced and expanded with any other RTOS or middleware.
The FSP also includes a best-in-class HAL driver, as part of the FSP, and provides a host of efficiency enhancing tools for developing projects targeting the RA2L1 MCUs. The e2 studio Integrated Development Environment provides a familiar development cockpit from which the key steps of project creation, module selection and configuration, code development, code generation, and debugging are all managed. The FSP uses a GUI to simplify the process and dramatically accelerate the development process, while also making it easy for customers to transition from an original 8/16-bit MCU design.
Availability
The RA2L1 MCUs are available now from Renesas’ worldwide distributors. For more information and an evaluation board, please visit: https://www.renesas.com/ra2l1.
 
 
About Renesas Electronics Corporation
Renesas Electronics Corporation (TSE: 6723) delivers trusted embedded design innovation with complete semiconductor solutions that enable billions of connected, intelligent devices to enhance the way people work and live. A global leader in microcontrollers, analog, power, and SoC products, Renesas provides comprehensive solutions for a broad range of automotive, industrial, Infrastructure, and IoT applications that help shape a limitless future. Learn more at renesas.com. Follow us on LinkedInFacebookTwitter, and YouTube.
 

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

ROHM Automotive Intelligent Power Device (IPD)
Modern automotive applications require a variety of circuit protections and functions to safeguard against short circuit conditions. In this episode of Chalk Talk, Amelia Dalton and Nick Ikuta from ROHM Semiconductor investigate the details of ROHM’s Automotive Intelligent Power Device, the role that ??adjustable OCP circuit and adjustable OCP mask time plays in this solution, and the benefits that ROHM’s Automotive Intelligent Power Device can bring to your next design.
Feb 1, 2024
11,536 views