industry news
Subscribe Now

Phlux’s 12X more sensitive IR sensors transform LiDAR, rangefinder, and optical fiber test performance

Sheffield, UK, 25th January 2024: Phlux Technology, a manufacturer of avalanche photodiode (APD) infrared sensors, announces its first products, the Aura family of 1550 nm devices based on the company’s Noiseless InGaAs™ APD technology. The sensors are 12X more sensitive than traditional best-in-class InGaAs APDs. As a result, the operating range of LiDAR, laser rangefinders, and optical fiber test equipment can be extended by up to 50% with Phlux sensors, which are drop-in replacements for existing surface mount or TO-packaged components.
In new designs, the Aura sensors enable 12X greater LiDAR image resolution for a given laser power, up to 30% reduction in system size and weight, and up to 40% lower system costs. The size and cost reductions come from using lower-power lasers and smaller optical apertures without impacting system performance. Also, thermal management is simplified because Aura APDs operate at up to +85 °C without performance degradation, which is a significantly higher temperature than traditional parts.
Phlux CEO, Ben White, said, “Our Noiseless APD technology is a step-function leap in performance and provides tangible benefits for any company involved with 1550 nm lasers. Automotive LiDAR is an exciting application where the move from 905 nm to 1550 nm lasers is accelerating, not least because the latter is “eye-safe”. But there are also huge opportunities for our products in telecommunications, laser rangefinders, imaging, spectroscopy, gas sensing and optical fiber test equipment, particularly optical time domain reflectometers.”
Phlux created its Noiseless InGaAs APD technology through adding an antimony alloy to the compound semiconductor manufacturing process. The resulting sensors can be operated with APD gains up to 120, enabling even the smallest signals above the noise floor of a connected trans-impedance amplifier (TIA) to be amplified. A further benefit of Aura APDs is their rapid overload recovery, which means that weaker secondary pulses that closely follow a large pulse can be detected.
The Aura APD 200 (200 µm optical aperture) and Aura APD 80 (80 µm optical aperture) sensors are available as bare die or in industry-standard SMD, chip on sub-mount, and TO-46 packages designed to meet MIL-STD 883.
Typical parameters for both devices are responsivity of 0.98 A/W at 1550 nm, spectral range of 950 nm to 1700 nm, and excess noise factor of 1.86 at an avalanche gain of 40, or 1.08 at an avalanche gain of 10.
At a gain of 10, the noise equivalent power for the Aura APD 200 diode is 17 fW/Hz0.5, its capacitance 2.4 pF and its cut-off frequency 0.7 GHz. The equivalent figures for the Aura APD 80 are 11.1 fW/Hz0.5, 0.6 pF, and 1.8 GHz.
Both devices have a typical operating voltage of -55 to -65 V and breakdown voltage of -65 V, and their operating temperature range is -40 °C to +85 °C.
These sensors are in production now and data sheets can be downloaded here.
+++ ends +++
Photo Caption
Phlux Noiseless InGaAs Aura APDs are 12X more sensitive at 1550 nm
 
About Phlux Technology
 
Phlux Technology designs, manufactures and markets 1550 nm infrared (IR) sensors that are 12x more sensitive than alternatives. As a result, Phlux’s Noiseless InGaAs™ Avalanche Photodiodes (APD) detect signals at up to 50% greater distance in range finders, LiDAR systems, and optical fiber test equipment. In every application, Phlux sensors boost performance, simplify thermal management, and cut system cost and size through relaxing laser and optics requirements. The sensors are available as bare die or in industry-standard surface-mount or wire-ended packages, so can be retrofitted to existing systems. The technology is cost-competitive for mass-market adoption.
Founded in 2020 and based in Sheffield, UK, Phlux Technology is a spin-out from Sheffield University. The company’s patented technology is the result of eight years of research at the university and its co-founders are Ben White (Phlux CEO), Jo Shien Ng (Professor of Semiconductor Devices), Chee Hing Tan (Head of Department of Electronic and Electrical Engineering).
Phlux raised a seed funding round of £4 million led by Octopus Ventures in December 2022.
More information about Phlux can be found here.

Leave a Reply

featured blogs
May 8, 2024
Learn how artificial intelligence of things (AIoT) applications at the edge rely on TSMC's N12e manufacturing processes and specialized semiconductor IP.The post How Synopsys IP and TSMC’s N12e Process are Driving AIoT appeared first on Chip Design....
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Introducing Altera® Agilex 5 FPGAs and SoCs

Sponsored by Intel

Learn about the Altera Agilex 5 FPGA Family for tomorrow’s edge intelligent applications.

To learn more about Agilex 5 visit: Agilex™ 5 FPGA and SoC FPGA Product Overview

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

OPTIGA™ TPM SLB 9672 and SLB 9673 RPI Evaluation Boards
Sponsored by Mouser Electronics and Infineon
Security is a critical design concern for most electronic designs today, but finding the right security solution for your next design can be a complicated and time-consuming process. In this episode of Chalk Talk, Amelia Dalton and Andreas Fuchs from Infineon investigate how Infineon’s OPTIGA trusted platform module can not only help solve your security design concerns but also speed up your design process as well.
Jun 26, 2023
36,971 views