industry news
Subscribe Now

Paragraf Partners with CERN to Demonstrate Unique Properties of Paragraf’s New Graphene Hall Effect Sensor

Paragraf has embarked on a working partnership with the Magnetic Measurement section at CERN, the European Organization for Nuclear Research, to demonstrate how new opportunities for magnetic measurements are opened up through the unique properties of its graphene sensor, particularly its negligible planar Hall effect.
CERN operates the largest particle accelerators in the world, for example its 27-km long, Large Hadron Collider (LHC) which straddles the border between Switzerland and France near Geneva. Physicists look at how our world is built at the fundamental level by colliding sub-atomic particles in particle accelerators that rely on large numbers of normal and superconducting magnets to steer and focus the particle beam to their collision points.

The Magnetic Measurements section at CERN is in charge of testing magnets for these accelerators using the latest-available techniques and instruments. High precision and reliable measurements are performed for many of CERN’s ongoing projects, and therefore the team is always on the lookout for new sensors and transducers for improving their measurement methods and accuracy.

Simon Thomas, CEO at Paragraf commented: “This collaboration with CERN demonstrates the potential of graphene-based Hall effect sensors to improve accuracy in magnetic measurement applications. Our Hall effect sensors address key challenges CERN is facing in mapping magnetic fields, namely: highly accurate measurements of local field distributions in accelerator magnets, while eliminating artefacts and reducing uncertainties stemming from the sensors.”

Existing Hall effect sensors all exhibit planar Hall effects where field components which are not perpendicular to the sensing plane produce false signals. This is because the sensing layer is effectively three-dimensional, with some amount of depth. These false signals, together with the non-linear response to the field strength, increase the measurement uncertainty and thus limit the application of Hall sensors. Separating the true signals from the systematic errors is a complex and time-consuming process.

Why CERN Chose Paragraf’s Hall effect Sensor

The Hall effect sensor from Paragraf solves these problems because the active sensing component is made of atomically thin graphene, which is therefore two-dimensional, and hence truly only senses magnetic fields along one direction; giving a negligible planar Hall effect. This enables the true perpendicular magnetic field value to be obtained, allowing for higher precision mapping of the local magnetic field.

“Using Hall effect sensors without planar effect would open the door to a new mapping technique by mounting a stack of sensors on a rotating shaft. The compelling advantage would be measurements of the harmonic content in accelerator magnets almost point-like along the magnet axis”, commented Stephan Russenschuck, head of the magnetic measurement section at CERN.

One of the other key properties of Paragraf’s Hall effect sensor is its wide temperature range from +80°C down to cryogenic temperatures of 1.5 Kelvin. For CERN, this means that fields inside the superconducting magnets could be measured with high accuracy, using sensors operating in liquid helium temperature ranges (below -269 °C, 4 Kelvin, -452 °F) where the calibration of sensors is less than trivial.

What’s Next

CERN’s Magnetic Measurement section is looking to perform more in-depth tests on the Hall effect sensors, with the eventual aim of using them to build a novel mapping system for magnetic fields.

Paragraf and CERN will also be releasing a joint white paper communicating the work to date in more detail and showcasing the lack of planar Hall effect in Paragraf’s sensors, as well as detailing its high performance across a range of magnetic fields.
Paragraf’s graphene Hall effect sensors are available to lead partners in small volumes. To discuss specific requirements, contact

Leave a Reply

featured blogs
Dec 1, 2022
Raspberry Pi are known for providing lost-cost computing around the world. Their computers have been used by schools, small businesses, and even government call centers. One of their missions is to educate children about computers and to help them realize their potential thro...
Nov 30, 2022
By Chris Clark, Senior Manager, Synopsys Automotive Group The post How Software-Defined Vehicles Expand the Automotive Revenue Stream appeared first on From Silicon To Software....
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

Matter & NXP

Sponsored by Mouser Electronics and NXP Semiconductors

Interoperability in our growing Internet of things ecosystem has been a challenge for years. But the new Matter standard is looking to change all of that. It could not only make homes smarter but our design lives easier as well. In this episode of Chalk Talk, Amelia Dalton and Sujata Neidig from NXP examine how Matter will revolutionize IoT by increasing interoperability, simplifying development and providing a comprehensive approach to security and privacy. They also discuss what the roadmap for Matter looks like and how NXP’s Matter reference platforms can help you get started with your next IoT design.

Click here for more information about NXP Semiconductors Development Platforms for Enabling Matter Devices