industry news
Subscribe Now

ON Semiconductor launches World’s First Automotive Qualified SiPM Array Product for LiDAR Applications

PHOENIX, Ariz. – March 1, 2021 – ON Semiconductor (Nasdaq: ON), driving energy efficient innovations, today announced the new RDM-Series silicon photomultiplier (SiPM) array that extends the LiDAR sensor capabilities to its broad portfolio of intelligent sensing solutions. The ArrayRDM-0112A20-QFN is the first automotive qualified SiPM product in the market, ready for the growing demands in LiDAR applications for the automotive industry and beyond.

The ArrayRDM-0112A20-QFN is a monolithic 1×12 array of SiPM pixels based on the company’s market−leading RDM process, which enables high sensitivity to near-infrared (NIR) light to achieve industry-leading 18.5% photon detection efficiency (PDE)(1) at 905 nanometers (nm). The high internal gain of the SiPM allows sensitivity down to the single-photon level, a feature that in combination with the high PDE, enables the detection of the faintest return signals. This results in the ability to range to greater distances even with low reflective targets.

SiPM technology has gained momentum in recent years and has become the sensor of choice for broad-market depth sensing applications due to its unique feature set. SiPMs have the ability to deliver the highest signal-to-noise performance for long distance ranging in bright sunlight conditions. Additional benefits including lower supply biases and lower sensitivity to temperature changes make it an ideal upgrade for systems that use legacy avalanche photodiodes (APDs). SiPMs are produced in a high-volume CMOS process, allowing for the lowest detector cost and therefore enabling broad-market LiDAR solutions.

Using laser light to measure the distance of an object has spanned the fields of automotive, consumer and industrial applications. In automotive, LiDAR can be employed to improve safety and driver assistance systems (ADAS), aiding features such as lane keeping and traffic jam assist by complementing and providing redundancy with other sensing modalities. LiDAR is becoming commonly used for fully autonomous driving use cases, such as robotic transportation, to safely navigate the environment in real time. Benefiting from the high PDE of ArrayRDM-0112A20-QFN, LiDAR systems supporting these functions have been proven to range over 300 meters in distance. More distance gives more time for the vehicle to respond to unexpected obstacles.

“The high-resolution depth data provided by LiDAR enables instantaneous and accurate object identification in challenging low light conditions. As the first automotive qualified SiPM, the ArrayRDM-0112A20-QFN will enable long range, cost-effective LiDAR solutions for the next level of safety and autonomy,” commented Wade Appelman, senior director, Automotive Sensing Division at ON Semiconductor. “We are continuously enhancing our sensor portfolio by offering diverse and complementary sensing modalities that pave the way to higher levels of ADAS and autonomous driving.”

“At Yole Développement (Yole), we see LiDAR as a critical component on the route to full autonomy in automotive, with functionality required to reach level 2+ and above. Producing sensors that pass automotive qualification, and with a sufficient level of performance, will be a key enabler to the mass adoption of LiDAR for automotive applications, which, based on current trends, is expected to show a +144% CAGR between 2019 and 2025(2),” explained Pierrick Boulay, Technology & Market Analyst at Yole.

The ArrayRDM-0112A20-QFN is AEC-Q102 qualified and developed in accordance with IATF 16949. For more information regarding our LiDAR solutions, please contact a local sales office.

Additional resources:
ArrayRDM-0112A20-QFN Product Page (https://bit.ly/3aT1Sq5)
Evaluation Board for the ArrayRDM-0112A20-QFN (https://bit.ly/3q2dyv7)
A Brief Introduction to Silicon Photomultiplier (SiPM) Sensors White Paper (https://bit.ly/3ssg7b8)

Max PDE at typical operating voltage and 21°C. PDE increases to >25% at 905 nm at elevated temperature.
Source: LiDAR for Automotive and Industrial Applications 2020 report, Yole Développement (Yole), 2020

E N D S

About ON Semiconductor
ON Semiconductor (Nasdaq: ON) is driving energy efficient innovations, empowering customers to reduce global energy use. The company is a leading supplier of semiconductor-based solutions, offering a comprehensive portfolio of energy efficient, power management, analog, sensors, logic, timing, connectivity, discrete, SoC and custom devices. The company’s products help engineers solve their unique design challenges in automotive, communications, computing, consumer, industrial, medical, aerospace and defense applications. ON Semiconductor operates a responsive, reliable, world-class supply chain and quality program, a robust compliance and ethics program, and a network of manufacturing facilities, sales offices and design centers in key markets throughout North America, Europe and the Asia Pacific regions. For more information, visit http://www.onsemi.com.

2 thoughts on “ON Semiconductor launches World’s First Automotive Qualified SiPM Array Product for LiDAR Applications”

Leave a Reply

featured blogs
Apr 16, 2021
The Team RF "μWaveRiders" blog series is a showcase for Cadence AWR RF products. Monthly topics will vary between Cadence AWR Design Environment release highlights, feature videos, Cadence... [[ Click on the title to access the full blog on the Cadence Community...
Apr 16, 2021
Spring is in the air and summer is just around the corner. It is time to get out the Old Farmers Almanac and check on the planting schedule as you plan out your garden.  If you are unfamiliar with a Farmers Almanac, it is a publication containing weather forecasts, plantin...
Apr 15, 2021
Explore the history of FPGA prototyping in the SoC design/verification process and learn about HAPS-100, a new prototyping system for complex AI & HPC SoCs. The post Scaling FPGA-Based Prototyping to Meet Verification Demands of Complex SoCs appeared first on From Silic...
Apr 14, 2021
By Simon Favre If you're not using critical area analysis and design for manufacturing to… The post DFM: Still a really good thing to do! appeared first on Design with Calibre....

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

featured chalk talk

Complete Packaging for IIoT Devices

Sponsored by Mouser Electronics and Phoenix Contact

Industrial Internet of Things (IIoT) design brings a new level of demands to the engineering team, particularly in areas like thermal performance, reliability, and scalability. And, packaging has a key role to play. In this episode of Chalk Talk, Amelia Dalton chats with Joel Boone of Phoenix Contact about challenges and solutions in IIoT design packaging.

Click here for more information about Phoenix Contact ICS 50 Enclosure System