industry news
Subscribe Now

NeoPhotonics Samples High Power Semiconductor Optical Amplifiers and Narrow Linewidth Lasers for Coherent Lidar Transceivers

High power SOAs and NLW-Lasers Improve Range and Sensitivity of Coherent Lidar Transceivers for Autonomous Vehicles

SAN JOSE, Calif., February 3, 2020 – NeoPhotonics Corporation (NYSE: NPTN), a leading designer and manufacturer of advanced hybrid photonic integrated circuit based modules and subsystems for bandwidth-intensive, high speed communications networks, today announced that it is sampling high power Semiconductor Optical Amplifiers (SOAs) and Narrow Linewidth (NLW) Distributed Feedback Lasers (DFB) lasers for long range automotive Lidar (“light detection and ranging”) applications.

NeoPhotonics SOAs and NLW lasers operate in eye-safe wavelength regions, and these offerings feature 1550nm wavelength SOAs with >24 dBm (>250mW) output power along with 1550nm NLW-DFB lasers that enable automotive Lidar systems to “see” considerably farther than 200 meters, thereby significantly enhancing safety.

Current Lidar systems for autonomous vehicles use expensive discrete optical components and employ direct detection measurement of the reflected light intensity, which limits range and sensitivity.  Next generation Lidar systems will use “coherent” technology, which was pioneered by NeoPhotonics for communications networks, to greatly increase the range and sensitivity by measuring the phase of the reflected light.  Coherent Lidar systems are fabricated using chip-scale manufacturing to reduce costs and enable high volume.

Chip scale manufacturing requires coherent Photonic Integrated Circuits (PICs) powered by low phase and intensity noise semiconductor lasers and high output power semiconductor optical amplifiers.  Narrow linewidth and low phase noise lasers enable the precise phase measurements required by coherent detection and optical amplifiers to boost the optical signal power for long reach detection.  When combined with coherent PIC receivers, high power SOA and NLW-DFB laser enable coherent Lidar transceivers for high volume manufacturing.

“Our laser components are key elements for chip-scale Lidar systems that can be manufactured in high volumes,” said Tim Jenks, Chairman and CEO of NeoPhotonics.  “Lidar architectures based on coherent technologies have the advantage of leveraging high volume, chip-scale technologies developed by NeoPhotonics for telecommunications and data center interconnect applications.  Laser components are manufactured in our internal fabs and utilize our advanced hybrid photonic integration technology for high performance and high reliability, allowing system integrators to quickly leverage coherent technology and its established manufacturing supply-chain for Lidar applications.” continued Mr. Jenks.

About NeoPhotonics

NeoPhotonics is a leading designer and manufacturer of optoelectronic solutions for the highest speed communications networks in telecom and datacenter applications.  The Company’s products enable cost-effective, high-speed data transmission and efficient allocation of bandwidth over communications networks. NeoPhotonics maintains headquarters in San Jose, California and ISO 9001:2015 certified engineering and manufacturing facilities in Silicon Valley (USA), Japan and China.  For additional information visit www.neophotonics.com.

Leave a Reply

featured blogs
Jul 6, 2020
If you were in the possession of one of these bodacious beauties, what sorts of games and effects would you create using the little scamp?...
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: Advances in DesignWare Die-to-Die PHY IP

Sponsored by Synopsys

Hear the latest about Synopsys' DesignWare Die-to-Die PHY IP for SerDes-based 112G USR/XSR and parallel-based HBI interfaces. The IP, available in advanced FinFET processes, addresses the power, bandwidth, and latency requirements of high-performance computing SoCs targeting hyperscale data center, AI, and networking applications.

Click here for more information about DesignWare Die-to-Die PHY IP Solutions

Featured Paper

Cryptography: Fundamentals on the Modern Approach

Sponsored by Maxim Integrated

Learn about the fundamental concepts behind modern cryptography, including how symmetric and asymmetric keys work to achieve confidentiality, identification and authentication, integrity, and non-repudiation.

Click here to download the whitepaper

Featured Chalk Talk

Passive Component Solutions for Automotive Safety Electronics

Sponsored by Mouser Electronics and AVX

In today’s demanding automotive safety applications, choosing high-quality passives with the right performance properties can make the difference between success and catastrophic failure. With issues like power quality, EMI suppression, circuit protection, and antennas, getting the right passives is critical. In this episode of Chalk Talk, Amelia Dalton chats with Daniel West of AVX about how to choose the right passives for safety-critical automotive applications.

Click here for more information about AVX Solutions for Automotive Safety Electronics