industry news
Subscribe Now

MIPI Alliance Completes Development of A-PHY v1.1, Doubling Maximum Data Rate and Adding New Options to Automotive SerDes Interface

Updated specification will also be brought forward for adoption as an IEEE standard.

PISCATAWAY, N.J., October 11, 2021— The MIPI Alliance, an international organization that develops interface specifications for mobile and mobile-influenced industries, today announced that development has been completed on A-PHY v1.1, the next version of the automotive serializer-deserializer (SerDes) physical-layer interface. Version 1.1 will double the maximum available downlink data rate from 16 Gigabits per second (Gbps) to 32 Gbps and include other enhancements to help automotive OEMs and their suppliers implement high-performance image sensors and displays in next-generation vehicles. The specification is undergoing member review, with official adoption expected within the next 90 days.

MIPI A-PHY is the first industry-standard, long-reach, asymmetric SerDes interface to provide high-performance links between automotive image sensors and displays and their associated electronic control units (ECUs). It was developed to simplify the integration of greater numbers of onboard sensors and displays for applications such as advanced driver-assistance systems (ADAS), digital cockpits, in-vehicle infotainment (IVI) and autonomous driving systems (ADS).

A-PHY offers a reach of up to 15 meters, unprecedented reliability with an ultra-low packet error rate of 10-19, high noise immunity and ultra-low latency. It also forms the foundation of MIPI Automotive SerDes Solutions (MASS), an end-to-end framework for connecting cameras, sensors and displays with built-in functional safety, security and data protection.

A-PHY v1.1 doubles the total downlink data rate from 16 to 32 Gbps by adding support for Star Quad (STQ) shielded dual differential pair cables that provide dual differential pairs of conductors within a single shielded jacket. This enables two A-PHY ports over a single cable, saving cost, weight and complexity compared with using two separate coaxial or shielded twisted pair cables.

Version 1.1 will also add optional PAM4 encoding for A-PHY downlink gears G1 and G2, with data rates of 2 Gbps and 4 Gbps, respectively. PAM4 encoding features lower modulation bandwidth for sub-1 GHz operation, allowing manufacturers to more easily migrate to A-PHY while using either legacy cables on current platforms or lower-cost cables on new platforms.

The new version will also add a faster uplink gear with an available data rate of up to 200 Mbps, twice the rate of the existing 100 Mbps uplink gear, providing more bandwidth for command and control of automotive peripherals. A-PHY v1.1 will be fully interoperable with A-PHY v1.0, and devices using both specifications will be able to coexist on the same network.

These enhancements will enable automotive manufacturers to design next-generation applications that use the latest camera and display technologies, including higher-performance instrument clusters and infotainment displays, interior driver and passenger monitoring systems, virtual side mirrors and other ADAS, IVI and ADS applications.

“A-PHY continues to evolve to meet the ever-increasing demand for high-performance, end-to-end automotive connectivity solutions with high reliability, resiliency and interoperability,” said Joel Huloux, chairman of MIPI Alliance. “With unprecedented bandwidth and a growing number of implementation options, A-PHY is positioned to power the development of the next generation of safer, more connected and autonomous vehicles.”

Upon completion of the MIPI Alliance adoption process, A-PHY v1.1 will also be brought forward for adoption as an IEEE standard. Earlier this year, IEEE adopted A-PHY v1.0 as IEEE 2977-2021 following the October 2020 signing of an IEEE-MIPI memorandum of understanding to facilitate the adoption process within IEEE. IEEE is the world’s largest technical professional organization dedicated to advancing technology for humanity.

MIPI continues to offer new educational resources to system architects, engineers and automotive developers, including the newly published white paper, “An Introductory Guide to MIPI Automotive SerDes Solutions (MASS).” MIPI Alliance is also serving as a supporting organization for this week’s Automotive SerDes Conference and will host a virtual Automotive Workshop on November 17 to provide more education on its MASS framework.

To keep up with MIPI Alliance, subscribe to the MIPI blog and stay connected by following MIPI on TwitterLinkedInFacebook and YouTube.

About MIPI Alliance
MIPI Alliance (MIPI) develops interface specifications for mobile and mobile-influenced industries. There is at least one MIPI specification in every smartphone manufactured today. Founded in 2003, the organization has over 325 member companies worldwide and 14 active working groups delivering specifications within the mobile ecosystem. Members of the organization include handset manufacturers, device OEMs, software providers, semiconductor companies, application processor developers, IP tool providers, automotive OEMs and Tier 1 suppliers, and test and test equipment companies, as well as camera, tablet and laptop manufacturers. For more information, please visit www.mipi.org.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Dependable Power Distribution: Supporting Fail Operational and Highly Available Systems
Sponsored by Infineon
Megatrends in automotive designs have heavily influenced the requirements needed for vehicle architectures and power distribution systems. In this episode of Chalk Talk, Amelia Dalton and Robert Pizuti from Infineon investigate the trends and new use cases required for dependable power systems and how Infineon is advancing innovation in automotive designs with their EiceDRIVER and PROFET devices.
Dec 7, 2023
18,225 views