industry news
Subscribe Now

MIPI Alliance Completes Development of A-PHY v1.1, Doubling Maximum Data Rate and Adding New Options to Automotive SerDes Interface

Updated specification will also be brought forward for adoption as an IEEE standard.

PISCATAWAY, N.J., October 11, 2021— The MIPI Alliance, an international organization that develops interface specifications for mobile and mobile-influenced industries, today announced that development has been completed on A-PHY v1.1, the next version of the automotive serializer-deserializer (SerDes) physical-layer interface. Version 1.1 will double the maximum available downlink data rate from 16 Gigabits per second (Gbps) to 32 Gbps and include other enhancements to help automotive OEMs and their suppliers implement high-performance image sensors and displays in next-generation vehicles. The specification is undergoing member review, with official adoption expected within the next 90 days.

MIPI A-PHY is the first industry-standard, long-reach, asymmetric SerDes interface to provide high-performance links between automotive image sensors and displays and their associated electronic control units (ECUs). It was developed to simplify the integration of greater numbers of onboard sensors and displays for applications such as advanced driver-assistance systems (ADAS), digital cockpits, in-vehicle infotainment (IVI) and autonomous driving systems (ADS).

A-PHY offers a reach of up to 15 meters, unprecedented reliability with an ultra-low packet error rate of 10-19, high noise immunity and ultra-low latency. It also forms the foundation of MIPI Automotive SerDes Solutions (MASS), an end-to-end framework for connecting cameras, sensors and displays with built-in functional safety, security and data protection.

A-PHY v1.1 doubles the total downlink data rate from 16 to 32 Gbps by adding support for Star Quad (STQ) shielded dual differential pair cables that provide dual differential pairs of conductors within a single shielded jacket. This enables two A-PHY ports over a single cable, saving cost, weight and complexity compared with using two separate coaxial or shielded twisted pair cables.

Version 1.1 will also add optional PAM4 encoding for A-PHY downlink gears G1 and G2, with data rates of 2 Gbps and 4 Gbps, respectively. PAM4 encoding features lower modulation bandwidth for sub-1 GHz operation, allowing manufacturers to more easily migrate to A-PHY while using either legacy cables on current platforms or lower-cost cables on new platforms.

The new version will also add a faster uplink gear with an available data rate of up to 200 Mbps, twice the rate of the existing 100 Mbps uplink gear, providing more bandwidth for command and control of automotive peripherals. A-PHY v1.1 will be fully interoperable with A-PHY v1.0, and devices using both specifications will be able to coexist on the same network.

These enhancements will enable automotive manufacturers to design next-generation applications that use the latest camera and display technologies, including higher-performance instrument clusters and infotainment displays, interior driver and passenger monitoring systems, virtual side mirrors and other ADAS, IVI and ADS applications.

“A-PHY continues to evolve to meet the ever-increasing demand for high-performance, end-to-end automotive connectivity solutions with high reliability, resiliency and interoperability,” said Joel Huloux, chairman of MIPI Alliance. “With unprecedented bandwidth and a growing number of implementation options, A-PHY is positioned to power the development of the next generation of safer, more connected and autonomous vehicles.”

Upon completion of the MIPI Alliance adoption process, A-PHY v1.1 will also be brought forward for adoption as an IEEE standard. Earlier this year, IEEE adopted A-PHY v1.0 as IEEE 2977-2021 following the October 2020 signing of an IEEE-MIPI memorandum of understanding to facilitate the adoption process within IEEE. IEEE is the world’s largest technical professional organization dedicated to advancing technology for humanity.

MIPI continues to offer new educational resources to system architects, engineers and automotive developers, including the newly published white paper, “An Introductory Guide to MIPI Automotive SerDes Solutions (MASS).” MIPI Alliance is also serving as a supporting organization for this week’s Automotive SerDes Conference and will host a virtual Automotive Workshop on November 17 to provide more education on its MASS framework.

To keep up with MIPI Alliance, subscribe to the MIPI blog and stay connected by following MIPI on TwitterLinkedInFacebook and YouTube.

About MIPI Alliance
MIPI Alliance (MIPI) develops interface specifications for mobile and mobile-influenced industries. There is at least one MIPI specification in every smartphone manufactured today. Founded in 2003, the organization has over 325 member companies worldwide and 14 active working groups delivering specifications within the mobile ecosystem. Members of the organization include handset manufacturers, device OEMs, software providers, semiconductor companies, application processor developers, IP tool providers, automotive OEMs and Tier 1 suppliers, and test and test equipment companies, as well as camera, tablet and laptop manufacturers. For more information, please visit www.mipi.org.

Leave a Reply

featured blogs
Oct 19, 2021
Learn about key roadblocks to improve ADAS systems & higher levels of autonomous driving, such as SoC performance, from our 2021 ARC Processor Virtual Summit. The post Top 5 Challenges to Achieve High-Level Automated Driving appeared first on From Silicon To Software....
Oct 19, 2021
Today, at CadenceLIVE Europe, we announced the Cadence Safety Solution, a new offering targeting safety-critical applications and featuring integrated analog and digital safety flows and engines for... [[ Click on the title to access the full blog on the Cadence Community si...
Oct 13, 2021
How many times do you search the internet each day to track down for a nugget of knowhow or tidbit of trivia? Can you imagine a future without access to knowledge?...
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

Fast & Accurate 3D Object Detection for LiDAR with DesignWare ARC EV Processor IP

Sponsored by Synopsys

This demo, developed in partnership with Sensor Cortek, executes the FA3D algorithm on ARC EV7x processor with DNN engine. It shows 3D boxes rendered onto objects detected in the video frames, enabling the development of driver assistance systems.

Click here for more information

featured paper

Designing an Accurate, Multifunction Lithium-Ion Battery-Testing Solution

Sponsored by Texas Instruments

This paper highlights the benefits of a discrete solution over an integrated solution in order to meet current and future battery testing challenges. It also includes an example of a highly flexible battery testing design.

Click to read more

featured chalk talk

WiFi 6 & 6E: Strengthening Smart Home Enablement

Sponsored by Mouser Electronics and Qorvo

Demands on WiFi are growing exponentially, and our aging standards and technology are struggling to keep up. Luckily, WiFi 6 and 6E represent a leap in WiFi capabilities for our systems. In this episode of Chalk Talk, Amelia Dalton chats with Tony Testa of Qorvo about the ins and outs of WiFi 6 and 6E with their increased speed, capacity, and efficiency.

Click here for more information about Qorvo Wi-Fi® 6 Solution