industry news
Subscribe Now

Imec Demonstrates for the First Time Functional Ring Oscillators Based on Stacked Gate-all-Around Silicon Nanowire Transistors

LEUVEN, Belgium—Dec. 4, 2017 – At this week’s 2017 International Electron Devices Meeting (IEDM), imec, the world-leading research and innovation hub in nano-electronics and digital technology, reports on multiple key process optimizations for vertically stacked gate-all-around (GAA) silicon nanowire transistors. The optimized CMOS process flow was then used to integrate, for the first time, the GAA nanowire transistors in a functional ring oscillator. This demonstrator shows the enormous promise this technology holds for realizing the sub-5nm technology nodes.
Gate-all-around (GAA) MOSFETs based on vertically stacked horizontal nanowires or nanosheets are promising candidates to succeed FinFETs in sub-5nm technology nodes, thus extending today’s CMOS technology beyond its scaling limits. This innnovative transistor architecture offers a more aggressive gate pitch scaling than FinFETs because it achieves a better electrostatic control. Moreover, in very scaled standard cells where only one fin device is allowed, nanosheets provide more current per footprint than fins, and thus can drive higher capacitive loads. Finally, integrating nanosheet devices with variable widths in a single platform enables power/performance optimization with high granularity.

As with every disruptive innovation, this new architecture demands for process optimizations. At IEDM, a team of researchers from imec and Applied Materials demonstrated multiple optimizations for the fabrication of stacked silicon nanowire and nanosheet FETs. The first process optimization is the implementation of a SiN Shallow Trench Isolation (STI) liners which suppresses oxidation-induced fin deformation and improves the shape control of the nanowire or nanosheet. Secondly, SelectraTM etch was used to enable nanowire/nanosheet release and inner spacer cavity formation with high selectivity and without causing silicon reflow. Finally, for the first time, ring oscillator circuits were reported based on stacked silicon nanowire FETs, including dual work function metal gates for threshold voltage control.

At IEDM, imec also presented a study on the reliability of GAA nanowires showing that the degradation mechanisms and their origins are similar as the one in planar devices. The modelling of the degradation including various channel hot-carrier (CHC) modes as well as positive bias temperature instability (PBTI) allows an extrapolation to 10-years lifetime in the full bias space. The obtained safe operation area (SOA) was used to optimize device operation. An extra degradation mechanism that must be taken into account is self-heating, which is very important in such confined structures. Finally, in a study on ESD diodes  in sub-7nm GAA nanowire technology nodes, imec proved that the diodes performance is significantly impacted by some of the process options and that optimizations are needed, such as a wrap around contact (WAC) which can increase contact area in a scaled fin pitch and can be combined with GAA.

“GAA nanowire transistors are key in further CMOS scaling,” stated Naoto Horiguchi, distinguished member of the technical staff at imec. “Earlier this year, we demonstrated standalone transistors and CMOS integration, now the next step was taken with a full demonstrator, showing the enormous promise this technology holds for realizing the sub-7 nm technology nodes.”

Imec’s research into advanced logic scaling is performed in cooperation with imec’s key CMOS program partners  including GlobalFoundries, Huawei, Intel, Micron, Qualcomm, Samsung, SanDisk/Western Digital, SK Hynix, Sony Semiconductor Solutions, TOSHIBA Memory and TSMC.

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

Introducing Altera® Agilex 5 FPGAs and SoCs

Sponsored by Intel

Learn about the Altera Agilex 5 FPGA Family for tomorrow’s edge intelligent applications.

To learn more about Agilex 5 visit: Agilex™ 5 FPGA and SoC FPGA Product Overview

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

Audio Design for Augmented and Virtual Reality (AR/VR) Glasses
Open ear audio can be beneficial to a host of different applications including virtual reality headsets, smart glasses, and sports and fitness designs. In this episode of Chalk Talk, Amelia Dalton and Ryan Boyle from Analog Devices explore the what, where, and how of open ear audio. We also investigate the solutions that Analog Devices has for open ear audio applications and how you can design open ear audio into your next application. 
Jan 23, 2024
13,930 views