industry news
Subscribe Now

Enhanced Serial Peripheral Interface (eSPI) Master/Slave Controller

DCD-SEMI, a leading IP Core provider and SoC design house from Poland has mastered unique DeSPI IP Core. It is a fully configurable eSPI master/slave device supporting all features described in the Enhanced Serial Peripheral Interface Base Specification rev. 1.0. The DESPI master is to be used by the microcontroller to communicate with eSPI peripheral devices. The DESPI slave is to be used as an eSPI peripheral device, e.g., an Embedded Controller attached to the Intel CPU system.

Bytom, Poland June the 28th, 2022. The eSPI bus is an LPC bus improvement. The serial clock line (_sck) synchronizes shifting and sampling of the information on the IO lines. – It is a technology-independent design that can be implemented in a variety of process technologies – explains Jacek Hanke, DCD-SEMI CEO. 

The DESPI is flexible enough to interface directly with numerous peripherals. The system may be configured either as master or as slave, and depending on the core configuration, the _in or _out lines will be utilized. Its serial clock can run up to 66MHz – adds Hanke.

The DESPI is also capable of simple, dual, and quad SPI transfers. The DESPI is fully customizable, which means it is delivered in the exact configuration with the target design requirements. Additionally, the DESPI module is equipped with receiver and transmitter FIFOs, capable of storing up to 4096+16 bytes (Header and maximal data payload) in separate buffers for every eSPI channel. (Peripheral Channel Posted and Non-Posted, Virtual Wire Channel, Out of Band Channel, Flash Access Channel). 

Additionally, customizable Peripheral Channel Memory and IO port, Virtual Wire lines and event lines are also supported. An interesting and unique feature is the Alert mechanism, used by the eSPI Slave to request service from the eSPI master.

The controller is capable to operate in several eSPI configurations: 

  • Single Master- Single Slave, 
  • Single Master – Multiple Slaves. 

The DCD SPI cores, are part of our growing peripheral family that also includes protocols such as I3C and IR. The DCD SPI cores have been successfully implemented in Embedded Microprocessor Boards, Consumer and Professional Audio/Video, Home and Automotive Radio, Low-power Mobile Applications, Communication Systems, and Digital Multimeters.

More information: https://www.dcd-semi.com/product/despi/ 

About DCD-SEMI

DCD-SEMI has two decades of IP market experience. The company was founded in 1999 in Bytom, Poland and has mastered more than 70 different architectures, among them the World’s Fastest 8051 CPU, Royalty-Free and Fully Scalable 32-bit CPU and 100% cryptographic system. Automotive IP Cores designed by DCD-SEMI are offered as CAN ALL package – a tailored made IP Core which have been successfully implemented by dozens of automotive companies such as VW, Toyota and now GuardKnox. More information can be found at: www.dcd-semi.com, www.cfdsemi.com and www.crypt-one.com.

Leave a Reply

featured blogs
Apr 24, 2024
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Apr 23, 2024
We explore Aerospace and Government (A&G) chip design and explain how Silicon Lifecycle Management (SLM) ensures semiconductor reliability for A&G applications.The post SLM Solutions for Mission-Critical Aerospace and Government Chip Designs appeared first on Chip ...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Intel AI Update
Sponsored by Mouser Electronics and Intel
In this episode of Chalk Talk, Amelia Dalton and Peter Tea from Intel explore how Intel is making AI implementation easier than ever before. They examine the typical workflows involved in artificial intelligence designs, the benefits that Intel’s scalable Xeon processor brings to AI projects, and how you can take advantage of the Intel AI ecosystem to further innovation in your next design.
Oct 6, 2023
25,526 views