industry news
Subscribe Now

Energy Department’s American-Made High-Voltage Direct Current Prize Announces Four Winners

Winning Solutions Will Help Improve Grid Integration and Long-Distance Transmission

WASHINGTON, D.C.—The U.S. Department of Energy’s (DOE’s) Office of Electricity today announced the four winners of the American-Made High-Voltage Direct Current (HVDC) Prize. This $200,000 prize — $50,000 awarded to each winning team — incentivized competitors to share new technology solutions that improve the performance and resilience of the U.S. energy grid. The knowledge gained from these prizes will help reduce technology gaps that hinder HVDC deployment in the nation and enable new innovative solutions to technical challenges through the development of new hardware, controls, and advanced concepts. 

“Ensuring that low-cost, clean energy is available to support and improve the lives of all Americans is a priority for the Office of Electricity,” said Gene Rodrigues, Assistant Secretary for Electricity. “The ideas presented through the HVDC Prize will continue to strengthen the nation’s grid and pave the way for new, cutting-edge solutions within the renewables industry.”    

HVDC Prize competitors were required to submit technical narratives proposing their solutions and actionable steps toward advancing their ideas for the HVDC industry. Watch the video about this announcement by clicking here. The following four teams were each awarded $50,000 in cash prizes for their submissions.

  • Dr. Richard Zhang, Virginia Tech, Arlington, VA — Multi-Functional Intelligent Voltage-Source-Converter HVDC:  This submission aims to develop a multi-functional, intelligent voltage-source-converter which will significantly reduce engineering costs and time in the design, test, and commission phases for commercial HVDC projects. The proposed design also ensures that operations are controlled, minimizing energy product losses caused by unstable conditions.   
  • SixPoint Materials, Inc., Santa Barbara, CA — Hybrid HVDC Breaker Using GaN Semiconductor: This team is developing a gallium nitride (GaN) photoconductive semiconductor switch (PCSS) for hybrid HVDC circuit breakers, decreasing operational costs and increasing response time and efficiency. These efforts will help meet the need of rapidly growing renewable powerplants that require reliable, multi‐terminal HVDC transmission systems.  
  • University of South Florida, Tampa, FL — Generalized Dynamic Circuit Model Design for HVDC: This submission provided a unified modeling framework for HVDCs that enables three types of analysis simultaneously: stability, harmonics, and ferroresonance. To meet this goal, this team developed dynamic circuit representations for HVDC converters with both DC and AC ports, accelerating HVDC system studies in the planning and design stages. 
  • Drexel University, Philadelphia, PA — Proactive Solid State Circuit Breaker for HVDC System Protection: This submission aims to minimize power outages and provide more reliable protections for DC systems through the development of a proactive solid state circuit breaker (P-SSCB). Based on the design’s modularity, the P-SSCB can be further extended to higher voltage and higher current applications. 

The prize is part of the American-Made Challenges program, which incentivizes innovation through prizes, training, teaming, and mentoring by connecting the nation’s entrepreneurs and innovators to America’s National Labs and the private sector. Since the American-Made Challenges prize program launched in 2018 to support U.S. entrepreneurship and innovation in clean energy, DOE has awarded over $150 million in cash prizes and incentives to competitors. 

Leave a Reply

featured blogs
Jul 20, 2024
If you are looking for great technology-related reads, here are some offerings that I cannot recommend highly enough....

featured video

How NV5, NVIDIA, and Cadence Collaboration Optimizes Data Center Efficiency, Performance, and Reliability

Sponsored by Cadence Design Systems

Deploying data centers with AI high-density workloads and ensuring they are capable for anticipated power trends requires insight. Creating a digital twin using the Cadence Reality Digital Twin Platform helped plan the deployment of current workloads and future-proof the investment. Learn about the collaboration between NV5, NVIDIA, and Cadence to optimize data center efficiency, performance, and reliability. 

Click here for more information about Cadence Data Center Solutions

featured chalk talk

From Sensor to Cloud:A Digi/SparkFun Solution
In this episode of Chalk Talk, Amelia Dalton, Mark Grierson from Digi, and Rob Reynolds from SparkFun Electronics explore how Digi and SparkFun electronics are working together to make cellular connected IoT design easier than ever before. They investigate the benefits that the Digi Remote Manager® brings to IoT design, the details of the SparkFun Digi XBee Development Kit, and how you can get started using a SparkFun Board for XBee for your next design.
May 21, 2024
9,603 views