industry news
Subscribe Now

DDC-I Announces Additional FACE™ 3.0 Conformance for Deos Safety-Critical Real-Time Operating System Running on ARM and x86 Processors

Builds on existing FACE Conformant PowerPC offering

Phoenix, AZ. December 9, 2020.  DDC-I, a leading supplier of software and professional services for mission- and safety-critical applications, today announced Future Airborne Capability Environment ™ (FACE) 3.0 Conformance for its Deos safety-critical DO-178 real-time operating system and OpenArbor development tools running on ARM and x86 processors. The certification covers the FACE™ Technical Standard, Edition 3.0 Safety Base and Security Profiles for the Operating System Segment (OSS).

“The addition of ARM and the x86 to our existing PowerPC FACE offering gives DDC-I the most robust, multi-platform, multi-core, FACE conformant RTOS and development tool portfolio in the avionics industry,” said Greg Rose, vice president of marketing and product management at DDC-I. “Avionics developers targeting ARM, PowerPC, and x86 processors now have a seamless FACE conformant RTOS platform that combines best-in-class performance and safety certifiability with enhanced application portability across the industry’s most advanced avionics processors.”

The Deos RTOS Platform for FACE Technical Standard 3.0 combines the time- and space-partitioned Deos RTOS and SafeMC multi-core technology with RTEMS (Real Time Executive for Multiprocessor Systems), a mature, deterministic, open systems, hard real-time POSIX executive. Deos provides ARINC 653 APEX interfaces and multi-core scheduling. A para-virtualized implementation of RTEMS, which runs in a secure Deos partition, provides POSIX interfaces and scheduling. The integrated platform combines the strengths and pedigree of both ARINC 653 and POSIX RTOSs, providing the industry standard interfaces and feature set required for conformance with the FACE Technical Standard Safety Base and Security and Operating System Profiles, all in a time and space partitioned, hard-real-time, multi-core execution model. 

Deos is a safety-critical embedded RTOS that employs patented cache partitioning, memory pools, and safe scheduling to deliver higher CPU utilization than any other certifiable safety-critical COTS RTOS on multi-core processors. First certified to DO-178 DAL A in 1998, Deos provides a FACE Safety Base Profile that features hard real-time response, time and space partitioning, and both ARINC-653 and POSIX interfaces. 

SafeMC™ technology extends Deos’ advanced capabilities to multiple cores, enabling developers of safety-critical systems to achieve best in class multi-core performance without compromising safety-critical task response and guaranteed execution time. SafeMC™ employs a bound multiprocessing (BMP) extension of the symmetric multiprocessing architecture (SMP), safe scheduling, and cache partitioning to minimize cross-core contention and interference patterns that affect the performance, safety criticality and certifiability of multi-core systems. These features enable avionics systems developers to address issues that could impact the safety, performance and integrity of a software airborne system executing on Multi-Core Processors (MCP), as specified by the Certification Authorities Software Team (CAST) in its Position Paper CAST-32A for Multi-core Processors.

About The Open Group FACE Consortium

The Future Airborne Capability Environment (FACE) Consortium, a consortium of The Open Group, is an aviation-focused professional group made up of U.S. industry suppliers, customers, and users. The FACE Consortium provides a vendor-neutral forum for industry and the U.S. government to work together to develop and consolidate the open standards, best practices, guidance documents and business models necessary to achieve these results. For more information visit: www.opengroup.org/face.

About DDC-I, Inc.

DDC-I, Inc. is a global supplier of real-time operating systems, software development tools, custom software development services, and legacy software system modernization solutions, with a primary focus on mission- and safety-critical applications. DDC-I’s customer base is an impressive “who’s who” in the commercial, military, aerospace, and safety-critical industries. DDC-I offers safety-critical real-time operating systems, compilers, integrated development environments and run-time systems for C, C++, Ada, and JOVIAL application development. For more information regarding DDC-I products, contact DDC-I at 4545 E. Shea Blvd, Phoenix, AZ 85028; phone (602) 275-7172; fax (602) 252-6054; e-mail sales@ddci.com or visit www.ddci.com/pr2010.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Optimize Performance: RF Solutions from PCB to Antenna
Sponsored by Mouser Electronics and Amphenol
RF is a ubiquitous design element found in a large variety of electronic designs today. In this episode of Chalk Talk, Amelia Dalton and Rahul Rajan from Amphenol RF discuss how you can optimize your RF performance through each step of the signal chain. They examine how you can utilize Amphenol’s RF wide range of connectors including solutions for PCBs, board to board RF connectivity, board to panel and more!
May 25, 2023
37,757 views