industry news
Subscribe Now

CacheQ Debuts Heterogeneous Compute Development Environment

Delivers Faster Performance, Reduced Development Time for Processor, FPGA Compute Architectures

LOS GATOS, CALIF. –– September 4, 2019 –– CacheQ Systems, Inc., a startup developing heterogeneous distributed acceleration solutions, today unveiled its QCC Acceleration Platform, a heterogenous compute development environment delivering faster performance and reduced development time for processor and field programmable gate array (FPGA) compute architectures. 

“Demand for hardware acceleration beyond x86 is tremendous,” remarks Clay Johnson, chief executive officer and co-founder of CacheQ Systems. “Our goal is to simplify high-performance data center and edge-computing application development. The QCC Acceleration Platform meets that goal and will enable new solutions across a variety of applications, including life sciences, financial trading, government, oil and gas exploration and industrial IoT.”

The QCC Acceleration Platform Advantage

“There are so many FPGA chips on the edge and in custom systems that are not optimally used,” notes Jay Zaveri, general partner at Social Capital and founder of the Discover program. “We believe an Ultravisor that runs code directly on these systems with no complicated hardware design is a critical need for computational infrastructure today –– code that runs 50X faster in minutes instead of months. We believe the technology that CacheQ has invented and the stellar team they have could tackle this really hard problem head on.” 

Existing FPGA solutions have evolved over the last 30 years and focus solely on hardware designers, not the needs of software developers. The QCC Acceleration Platform is meant for software developers with limited knowledge of hardware architecture and delivers 100x performance with 15x reduction in development time. 

While existing technologies require a variety of tasks to be done by hardware designers with results validated by execution in hardware, the QCC Acceleration Platform’s fully pipelined implementations are complimented with a custom many-port pooled memory architecture. It simplifies processor and FPGA compute architecture design, letting software developers implement applications in days compared to a more typical nine- to 12-month schedule.

Based on the proprietary CacheQ virtual machine (CQVM), the QCC Acceleration Platform is a heterogenous compute development environment that converts serial high-level language (HLL) code into a parallel representation in less than 30 seconds for the most complex designs. It supports code profiling, utilization estimates, performance simulation, memory configuration and partitioning across a variety of compute engine processors, including x86, Arm and RISC-V, and FPGAs, prior to generating a compute executable. 

Features include a development environment with uniform drivers, protected containers and support for multiple boards from multiple vendors. Its design analysis offers profiling, performance simulation and memory activity reporting. Its optimization capability adds code unrolling, user-driven memory configuration, and automatic and user-guided partitioning. The FPGA implementation includes a resource estimator, pre-configured shells, multiple boards and parts, and implementation tool automation. The memory implementation supports automatic integration, multi-port/multi-access and stripping.

Availability and Pricing

The QCC Acceleration Platform is shipping now in limited volume, with general availability in Q4 2019. The initial release supports FPGA accelerator boards from Alpha Data, Bittware and Xilinx. Support for processor and FPGA system on chip (SoC) boards will be available later in the year.

Pricing is available on request.

Visit the CacheQ website for additional information, or requests for a demonstration or early access to the QCC Acceleration Platform.

About CacheQ Systems

CacheQ Systems, headquartered in Los Gatos, Calif., with a development center in Longmont, Colo., was founded in 2018 to accelerate performance and simplify development of data center and edge-computing applications executing on processors and single or multi FPGAs. Its QCC Acceleration Platform reduces development time and increases acceleration, enabling software developers to implement heterogeneous compute solutions leveraging processors and FPGAs with limited hardware architecture knowledge. More information can be found at the CacheQ Systems website.

All trademarks and registered trademarks are the property of their respective owners.

Leave a Reply

featured blogs
May 18, 2021
Since I was a kid, I’ve always been a fan of technology making life better. When I was 8, I remember programming the VCR to record the morning cartoons so I wouldn’t miss the good ones after the bus picked me up from school. When I was 10, I made mixtapes of my fa...
May 18, 2021
原文出è•: Please Excuse the Mesh: CFD and Pointwise ä½è…: Paul McLellan Cadence於今年四æˆæ”¶è³¼äº†æµé«”動力學公司Pointwiseã‚å¨æˆ‘的前ä¸ç¯‡æ–‡ç« æŽ¢è¨Ž PointwiseãPCIeã...
May 13, 2021
Our new IC design tool, PrimeSim Continuum, enables the next generation of hyper-convergent IC designs. Learn more from eeNews, Electronic Design & EE Times. The post Synopsys Makes Headlines with PrimeSim Continuum, an Innovative Circuit Simulation Solution appeared fi...
May 13, 2021
By Calibre Design Staff Prior to the availability of extreme ultraviolet (EUV) lithography, multi-patterning provided… The post A SAMPle of what you need to know about SAMP technology appeared first on Design with Calibre....

featured video

Insights on StarRC Standalone Netlist Reducer

Sponsored by Synopsys

With the ever-growing size of extracted netlists, parasitic optimization is key to achieve practical simulation run times. Key trade-off for any netlist reducer is accuracy vs netlist size. StarRC Standalone Netlist reducer provides the flexibility to optimize your netlist on a per net basis. The user has total control of trading accuracy of some nets versus netlist optimization - yet another feature from StarRC to provide flexibility to the designer.

Click here for more information

featured paper

How to solve two screenless TV design challenges

Sponsored by Texas Instruments

The new 4K display chipsets from DLP Products help make screenless TV setup easier and save cost by reducing the number of components required while also adding more advanced image-processing capabilities. The DLP471TP DMD and DLPC6540 controller for small designs and the DLP471TE DMD and DLPC7540 controller for designs above 1,500 lumens help deliver stunning ultra-high resolution displays to the market and take advantage of the rapid expansion in the availability of 4K content.

Click here to read

featured chalk talk

Using the Graphical PMSM FOC Component in Harmony3

Sponsored by Mouser Electronics and Microchip

Developing embedded software, and particularly configuring your embedded system can be a major pain for development engineers. Getting all the drivers, middleware, and libraries you need set up and in the right place and working is a constant source of frustration. In this episode of Chak Talk, Amelia Dalton chats with Brett Novak of Microchip about Microchip’s MPLAB Harmony 3, with the MPLAB Harmony Configurator - an embedded development framework with a drag-and-drop GUI that makes configuration a snap.

Click here for more information about Microchip Technology MPLAB® X Integrated Development Environment (IDE)