industry news
Subscribe Now

Aldec’s Latest Embedded Development Platform is First to Feature Largest PolarFire and SmartFusion2 FPGAs on a Single Board

Aldec’s HES-MPF500-M2S150 Development Kit supports the early co-development and co-verification of hardware and software in projects targeting FPGAs from Microchip’s PolarFire and SmartFusion2 families.

Henderson, USA – November 26, 2019 – Aldec, Inc., a pioneer in mixed HDL language simulation and hardware-assisted verification for FPGA and ASIC designs, has launched the HES-MPF500-M2S150 Development Kit, to aid engineers in the development of FPGA-based embedded systems that will use devices from either or both of Microchip’s PolarFire or SmartFusion2 families.

The HES-MPF500-M2S150 Development Kit is the first of its kind in the industry to carry devices from Microchip’s PolarFire and SmartFusion2 FPGA families, whereas all other development boards available carry one or the other. In addition, such single-FPGA boards carry just mid-range devices.

“This latest addition to our HES product line is in direct response to requests from customers who are in need of advanced and versatile prototyping platforms that provide easy access to one or both of Microchip’s popular FPGAs,” comments Zibi Zalewski, General Manager of Aldec’s Hardware Division. “By selecting Microchip’s largest devices from both families, we are sparing engineers from worrying about optimization early on in their design flow. Instead, they can do their What If experimentation and address optimization and other performance issues once they have achieved the top-level functionality they desire.”

Zalewski goes on to flag that although a design might only be targeted at the PolarFire FPGA the SmartFusion2 device can be used as an embedded host and test driver. Similarly, the PolarFire FPGA can be loaded with test vectors for verifying the design on the SmartFusion2 device.

The HES-MPF500-M2S150 Development Kit features Microchip’s low power PolarFire MPF500T FCG1152 FPGA, which has 481k logic elements, 1480 math blocks, 33Mbits of RAM, and 584 I/Os. In addition, the PolarFire family of FPGAs afford high security, which is of great benefit in the fight against cyber-crime.

Also featured on the HES-MPF500-M2S150 is Microchip’s SmartFusion2 M2S150 FPGA. At the heart of this SoC device is an embedded Arm Cortex-M3 microcontroller subsystem with DDR3 memory controllers.

The two FPGAs on Aldec’s HES-MPF500-M2S150 are connected via direct I/Os and both devices have access, via a PCIe switch, to a PCIe x4 Gen2 Edge Connector; and it is this switch that allows the FPGAs to work together or independently.

High speed serial I/Os are available on both sides of the kit (i.e. for the PolarFire and SmartFusion2) via QSFP+ ports plus the SmartFusion2 can communicate with the outside world via ethernet or USB. Connection to peripherals is achieved through an FMC HPC connector with 134 I/Os and 8 high speed serial I/Os. Aldec has a growing portfolio of FMC cards that includes ones tailored for the development of ADAS, IoT, networks and high-performance computing (HPC) applications.

The HES-MPF500-M2S150 Development Kit is available to order now and includes designer resources, sample designs, utilities and documentation.

About HES

Aldec offers a portfolio of versatile HES™ prototyping boards based on the largest and industry leading FPGAs of the Xilinx Virtex UltraScale+, UltraScale, Virtex-7 families and Microsemi PolarFire and SmartFusion2 families. The boards are architected to allow for easy expansion using standardized FMC and BPX daughter card connectors. Thanks to HES-DVM software HES boards can be reused at earlier verification stages for simulation acceleration, emulation, hybrid co-emulation with virtual platforms and prototyping. With HES Proto-AXI software package HES boards are also used for algorithms acceleration in High Performance Computing (HPC) applications.

About Aldec

Aldec Inc., headquartered in Henderson, Nevada, is an industry leader in Electronic Design Verification and offers a patented technology suite including: RTL Design, RTL Simulators, Hardware-Assisted Verification, SoC and ASIC Prototyping, Design Rule Checking, CDC Verification, IP Cores, Requirements Lifecycle Management, DO-254 Functional Verification and Military/Aerospace solutions.

Leave a Reply

featured blogs
Jul 9, 2020
It happens all the time. We'€™re online with a designer and we'€™re looking at a connector in our picture search. He says '€œI need a connector that looks just like this one, but '€¦'€ and then he goes on to explain something he needs that'€™s unique to his desig...
Jul 6, 2020
If you were in the possession of one of these bodacious beauties, what sorts of games and effects would you create using the little scamp?...
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...

featured video

Product Update: DesignWare MIPI C-PHY/D-PHY IP

Sponsored by Synopsys

Get the latest update on Synopsys' DesignWare MIPI C-PHY/D-PHY IP solution and how the 24 Gbps total bandwidth can enable your camera, display, automotive, drone, and image sensor SoCs implemented in advanced FinFET processes.

Click here for more information about Synopsys' DesignWare MIPI C-PHY/D-PHY IP solution

Featured Chalk Talk

DC-DC for Gate Drive Power

Sponsored by Mouser Electronics and Murata

In motor control and industrial applications, semiconductor switches such as IGBTs and MOSFETS of all types - including newer wide-bandgap devices are used extensively to switch power to a load. This makes DC to DC conversion for gate drivers a challenge. In this episode of Chalk Talk, Amelia Dalton chats with John Barnes of Murata about DC to DC conversion for gate drivers for industrial and motor control applications.

More information about Murata Power Solutions MGJ DC/DC Converters: