industry news
Subscribe Now

ACEINNA Launches Industry’s First High Accuracy Current Sensors based on AMR Technology

Highly accurate, wide bandwidth, fully isolated and affordable current sensing
  • “All in One”, Easy to Integrate Current Sensor for Inverters and Motor Control, Industrial Robots and Manufacturing Systems, Telecom and Server Farm Power Supplies, Automotive EV Charging Stations, IoT Appliance, Home Automation and many other tech applications

Andover, Massachusetts- February 12, 2019

ACEINNA today announced its new MCx1101 family of ±5A, ±20A, and ±50A Current Sensors for industrial and power supply applications. The first high accuracy wide bandwidth AMR-based current sensors on the market, units and evaluation boards are available now for sampling and volume shipments.

“Our new integrated, AMR based Current Sensor family provides the best performance for the price in the industry,” says Khagendra Thapa, VP Current Sensor Product for ACEINNA. “There are other AMR based current sensing solutions on the market, but they require a great deal of integration to make them work. Ours are plug and play.”

The MCx1101 are fully integrated, bi-directional current sensors that offer much higher DC accuracy and dynamic range compared with alternative solutions. For example, the ±20A version has a typical accuracy of ±0.6% and are guaranteed to achieve an accuracy of ±2.0% (max) at 85°C.

These new current sensors also guarantee an offset of ±60mA, or ±0.3% of FSR (max) over temperature, which means that high accuracy can be achieved over a roughly 10:1 range of currents. This is a roughly 10x improvement in dynamic range vs. leading Hall-sensor-based devices.

These devices deliver a unique combination of high accuracy, 1.5MHz signal bandwidth with industry benchmark phase shift vs. frequency and 4.8kV isolation making them ideal for high- and low-side sensing in fast current control loops for high performance power supplies, inverters and motor control applications.

The fast response and high bandwidth of the MCx1101 is also ideal for fast switching SiC and GaN based power stages enabling power system designers to make use of the higher speeds and smaller components enabled by wide band-gap switches.  Output step response time is 0.3us. The MCx1101 also provides an integrated over current detection flag to help implement  OCP (Over Current Protection) required in modern power systems. Over current detection response time is fast 0.2us.

The family includes ±50, ±20, and ±5A ranges, and is offered in both fixed gain (MCA1101) and ratiometric gain (MCR1101) versions. It is packaged in an industry standard SOIC-16 package with a low impedance (0.9 milli-ohm) current path and is certified by UL/IEC/EN for isolated applications.

All About AMR

ACEINNA is applying its long history, leadership and expertise in Anisotropic Magneto Resistive (AMR) magnetic sensing to AC and DC current sensing. AMR technology has significant advantages vs. other approaches such as Hall, CT (current transformer), and shunt resistors. Compared to Hall-based current sensors, AMR provides significantly higher bandwidth and dynamic range; Compared with CT’s, AMR offers reduced size and cost, as well as response to dc; in comparison with a shunt resistor, AMR provides a fully integrated solution, eliminating the external amplifier and related circuitry required for high voltage isolation, which is a significant challenge at high frequencies. In addition, shunt resistors require enough IR drop to achieve accuracy goals at the low end of the current range, which often means they are dissipating undesirable levels of power at nominal currents. By contrast, the AMR device only measures the magnetic field generated by the current, so the I2R losses can be minimized.

Electronic and electrical power systems drawing over 75W generally require power factor correction and this pushes up the voltage, speed and complexity of power systems.  In such designs, fast isolated current measurement is needed.  Wide bandwidth and speed is critical as it is a core enabler to go to higher switching frequencies which everyone wants to do but currently can’t easily.

For additional technical details, the ACEINNA MCA1101 and MCR1101 Current Sensor data sheet is available at https://www.aceinna.com/current-sensors.

Order the part from Mouser at https://www.mouser.com/ACEINNA/Sensors/Current-Sensors/_/N-7gqeu?P=1y91mso

ABOUT ACEINNA

ACEINNA Inc., headquartered in Andover, Massachusetts, provides leading edge MEMS-based sensing solutions that help our customers improve the reliability, cost, features, and performance of their end products and equipment. In 2017, ACEINNA was spun off from MEMSIC which is now a part of a public company.  ACEINNA has been developing MR based sensor and magnetic thin film manufacturing for 15 years. ACEINNA provides a proven technology platform with over 300M MR based electronic compass units that have been integrated into mobile devices, automotive and industrial applications. The company has manufacturing facilities in Wuxi, China, and R&D facilities in San Jose CA, Andover MA, and Chicago IL.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Silence of the Amps: µModule Regulators
In this episode of Chalk Talk, Amelia Dalton and Younes Salami from Analog Devices explore the benefits of Analog Devices’ silent switcher technology. They also examine the pros and cons of switch mode power supplies and how you can utilize silent switcher µModule regulators in your next design.
Dec 13, 2023
18,704 views