industry news
Subscribe Now

Industry First Intelligent Charge Controller from ON Semiconductor Meets the Exacting Demands of Next Generation Power Banks

PHOENIX, Ariz. – October 18, 2016 – ON Semiconductor (Nasdaq: ON), driving energy efficiency innovations, has introduced a highly integrated single chip power bank solution for the development of next generation Li-Ion powered products. The LC709501F total Li-Ion battery solution offers broad power and voltage/current output range of 5 volt (V), 9 V and 12 V operation, with a maximum charge/discharge capability of up to 30 watts (W) through simple FET selection.

The LC709501F determines what type of device is connected and automatically selects the fastest available method for charging. Advanced users can even reprogram the LC709501F to support custom charge/discharge profiles, as well as USB Type-C and PD “Policy Engine” functions. This single-chip solution includes integrated fuel gauge function, configurable I/O, LED drivers, I2C interface, and pre-drivers for external power MOSFETs, providing system flexibility. A design reference kit is available to realize fast time to market. The LC709501F supports various output power levels up to 30 W, by changing external MOSFETs.  In addition, there is an integrated USB 2.0 Full Speed host controller.

The LC709501F’s USB host controller supports connectivity with iOS and Android apps that enable the device to communicate with the connected smartphone and subsequently make use of its display to show information concerning the battery health and the charging process (charging time, battery life, number of charging cycles completed, etc.). The device works with the proprietary charging protocols (such as Fast Charge and Qualcomm® Quick Charge™) now being utilized by smartphone manufacturers to accelerate the charging period. To ensure operational longevity, over-current, over-voltage, and redundant battery protection mechanisms are all included, as well as a thermistor for monitoring of temperature levels. The LC709501F supports an operational temperature range of -40 °C to +85 °C.

“With a growing need for on-the-go recharging of portable electronics, power banks are certain to become more prevalent over the coming years,” states Matthew Tyler, Director Strategy and Product Roadmap Definition of the Digital and DC/DC Division at ON Semiconductor. “Accurate and reliable charge capacity indication and the ability to support the latest quick charging standards are becoming more critical, especially as power bank capacities have grown over time. The level of sophistication that power banks possess is destined to increase, so that batteries can be replenished as quickly as possible and inconvenience is minimized. The new, best-in-class LC709501F charger will enable the creation of compact, highly efficient, feature-rich power banks that will simplify and accelerate time-to-market of next generation power bank solutions. Its breadth of functionality will enhance the user experience and mean that high degrees of safety are maintained.”

Packaging and Pricing

The LC709501F is offered in a QFN-52 (6 x 6 mm) package and priced at $2.80 per unit in 10,000 unit quantities. 

About ON Semiconductor

ON Semiconductor (Nasdaq: ON) is driving energy efficient innovations, empowering customers to reduce global energy use. The company is a leading supplier of semiconductor-based solutions, offering a comprehensive portfolio of energy efficient power management, analog, sensors, logic, timing, connectivity, discrete, SoC and custom devices. The company’s products help engineers solve their unique design challenges in automotive, communications, computing, consumer, industrial, medical, aerospace and defense applications. ON Semiconductor operates a responsive, reliable, world-class supply chain and quality program, a robust compliance and ethics program, and a network of manufacturing facilities, sales offices and design centers in key markets throughout North America, Europe and the Asia Pacific regions. For more information, visit http://www.onsemi.com.

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Achieve Greater Design Flexibility and Reduce Costs with Chiplets

Sponsored by Keysight

Chiplets are a new way to build a system-on-chips (SoCs) to improve yields and reduce costs. It partitions the chip into discrete elements and connects them with a standardized interface, enabling designers to meet performance, efficiency, power, size, and cost challenges in the 5 / 6G, artificial intelligence (AI), and virtual reality (VR) era. This white paper will discuss the shift to chiplet adoption and Keysight EDA's implementation of the communication standard (UCIe) into the Keysight Advanced Design System (ADS).

Dive into the technical details – download now.

featured chalk talk

Datalogging in Automotive
Sponsored by Infineon
In this episode of Chalk Talk, Amelia Dalton and Harsha Medu from Infineon examine the value of data logging in automotive applications. They also explore the benefits of event data recorders and how these technologies will shape the future of automotive travel.
Jan 2, 2024
17,703 views