industry news
Subscribe Now

SiTime Enters Wearables, IoT Markets with 32 kHz MEMS

SUNNYVALE, Calif. – June 4, 2014 – SiTime Corporation, an analog semiconductor company, today introduced the smallest, lowest power 32 kHz TCXO (temperature compensated oscillator). With its tiny footprint and ultra-low power consumption, the SiT1552 MEMS TCXO enables a paradigm shift in the size and battery life of wearable electronics and Internet of Things (IoT); such benefits are not available from legacy quartz devices.

“The markets for wearables and Internet of Things (IoT) are growing at a rapid pace. With this growth comes a need for customized devices that enable new features and higher performance,” said Marwan Boustany, Senior Analyst for MEMS & Sensors at IHS. “SiTime is a market share leader in the MEMS timing market and these advanced, 32 kHz MEMS TCXOs further support their market position.”

“By using its game-changing TempFlat MEMSTM and analog technology, SiTime has once again shattered the limitations of quartz. The SiT1552 MEMS TCXO is 20% of the size and consumes 50% of the power of comparable quartz devices,” said Piyush Sevalia, executive vice president of marketing at SiTime. “Our MEMS enable new system architectures that offer higher performance, small size and longer battery life. With another industry first, we continue to revolutionize the timing industry with our breakthrough MEMS solutions.”

The SiT1552 is the smallest TCXO available today and is available in a 1.5 x 0.8 mm chip scale package (CSP). The SiT1552 MEMS TCXO can perform various functions in a system such as:

  • Reference for real time clock (RTC) function
  • Sleep clock for connectivity – Bluetooth, Bluetooth Low Energy, WiFi
  • Heartbeat clock for battery supervisory function

Compared to a quartz TCXO, the SiT1552 MEMS TCXO is:

  • 20% of the size and is available in a 1.5 x 0.8mm CSP
  • 50% lower power, typically consuming less than 1 micro-amp
  • 45% thinner, with a height of 0.55 mm
  • 10 times faster startup, with a startup time of 0.3 milliseconds
  • 30 times higher shock resistance
  • 15 times higher reliability, at 500 million hours MTBF

Additional features of the SiT1552 include:

  • ±5 PPM frequency stability that enables 2 to 3 times longer battery life compared to a 180 PPM quartz resonator
  • NanoDriveTM, a programmable, low swing output that minimizes power and directly interfaces to the oscillator / RTC circuit in the downstream processor or PMIC
  • 1.5 to 3.63V operation, making it ideal for products that use a coin-cell or super-cap battery backup

Devices in the 1508 CSP are available in production now. Pricing is available upon request.

For more information and datasheets, visit www.sitime.com/products/32-khz-oscillators/sit1552
SiT1552 graphics: www.sitime.com/sit1552-press-kit

About SiTime

SiTime Corporation, an analog semiconductor company, is revolutionizing the $5B timing market with silicon MEMS timing solutions that replace legacy quartz products. With 80% market share and over 200 million devices shipped, SiTime is driving the electronics industry to use 100% silicon-based timing.

SiTime’s configurable solutions enable customers to differentiate their products with higher performance, reduced size and better reliability. The rich feature set and flexibility of our solutions allows customers to consolidate their supply-chain, reducing cost of ownership and time to market. By using standard semiconductor processes and high volume plastic packaging, SiTime offers the best availability and shortest lead times in the industry.

Leave a Reply

featured blogs
Sep 21, 2023
Wireless communication in workplace wearables protects and boosts the occupational safety and productivity of industrial workers and front-line teams....
Sep 21, 2023
Labforge is a Waterloo, Ontario-based company that designs, builds, and manufactures smart cameras used in industrial automation and defense applications. By bringing artificial intelligence (AI) into their vision systems with Cadence , they can automate tasks that are diffic...
Sep 21, 2023
At Qualcomm AI Research, we are working on applications of generative modelling to embodied AI and robotics, in order to enable more capabilities in robotics....
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....
Sep 21, 2023
See how we're accelerating the multi-die system chip design flow with partner Samsung Foundry, making it easier to meet PPA and time-to-market goals.The post Samsung Foundry and Synopsys Accelerate Multi-Die System Design appeared first on Chip Design....

Featured Video

Chiplet Architecture Accelerates Delivery of Industry-Leading Intel® FPGA Features and Capabilities

Sponsored by Intel

With each generation, packing millions of transistors onto shrinking dies gets more challenging. But we are continuing to change the game with advanced, targeted FPGAs for your needs. In this video, you’ll discover how Intel®’s chiplet-based approach to FPGAs delivers the latest capabilities faster than ever. Find out how we deliver on the promise of Moore’s law and push the boundaries with future innovations such as pathfinding options for chip-to-chip optical communication, exploring new ways to deliver better AI, and adopting UCIe standards in our next-generation FPGAs.

To learn more about chiplet architecture in Intel FPGA devices visit https://intel.ly/45B65Ij

featured paper

An Automated Method for Adding Resiliency to Mission-Critical SoC Designs

Sponsored by Synopsys

Adding safety measures to SoC designs in the form of radiation-hardened elements or redundancy is essential in making mission-critical applications in the A&D, cloud, automotive, robotics, medical, and IoT industries more resilient against random hardware failures that occur. This paper discusses the automated process of implementing the safety mechanisms/measures (SM) in the design to make them more resilient and analyze their effectiveness from design inception to the final product.

Click here to read more

featured chalk talk

Enable Sustainable Enterprises of the Future
Did you know that buildings are responsible for 40% of global energy consumption and 33% of greenhouse gas emissions? One way we can help both modernize and increase sustainability in our buildings is by adding 10BASE-T1L to our building controllers. In this episode of Chalk Talk, Amelia Dalton chats with Salem Gharbi from Analog Devices about how we can enable sustainable enterprises with ethernet connected building controllers. They examine the10BASE-T1L flexible design solutions that Analog Devices offers, how exiting?building infrastructure can take advantage of 10BASE-T1L and how you can get started on your next sustainable enterprise journey.
Dec 20, 2022
33,650 views