industry news
Subscribe Now

Imec and Johns Hopkins University team to expand healthcare applications for silicon nanotech

Leuven (Belgium) October 24, 2013 – Researchers and physicians at Johns Hopkins University will collaborate with the nanoelectronics R&D center imec to advance silicon applications in healthcare, beginning with development of a device to enable a broad range of clinical tests. The corresponding tests will be performed outside the laboratory. The collaboration, announced today, will combine the Johns Hopkins clinical and research expertise with imec’s nanoelectronics capabilities. The two organizations plan to forge strategic ties with additional collaborators in the healthcare and technology sectors.

“Johns Hopkins has always prioritized innovative and transformative research opportunities,” said Landon King, MD, the David Marine Professor of Medicine and executive vice dean of the school of medicine. “Our new collaboration with imec is such an opportunity, and we very much look forward to leveraging our respective strengths across the university in biomedical and nanotechnology research to improve patient diagnosis and care throughout the world.”

Imec and Johns Hopkins University hope to develop the next generation of “lab on a chip” concepts based on imec technology. The idea is that such a disposable chip could be loaded with a sample of blood, saliva or urine and then quickly analyzed using a smartphone, tablet or computer, making diagnostic testing faster and easier for applications such as disease monitoring and management, disease surveillance, rural health care and clinical trials. Compared with the current system of sending samples to a laboratory for testing, such an advance would be “the healthcare equivalent of transforming a rotary telephone into the iPhone,” said Drew Pardoll, MD, PhD, the Martin Abeloff Professor of Oncology. Pardoll leads the advisory board for the Johns Hopkins-imec collaboration, which will work to extend new applications of silicon nanotechnology into multiple areas of medicine.

“This relationship with Johns Hopkins is an important step toward creating a powerful cross-disciplinary ecosystem with consumer electronics and mobile companies, medical device manufacturers, research centers and the broader bio-pharma and semiconductor industries, to create the combined expertise required to address huge healthcare challenges that lie ahead,” stated Luc Van den hove, President and CEO at imec. “Only through close collaboration will we be able to develop technology solutions for more accurate, reliable and low-cost diagnostics that pave the way to better, predictive and preventive home-based personal health care.”

Rudi Cartuyvels, senior vice president of smart systems at imec, added, “The unique combination of imec’s nanoelectronics expertise with Johns Hopkins’ proven medical sciences and clinical expertise will enable us to jointly develop game changing solutions for more effective healthcare.”

Imec, established as an independent non-profit research organization in 1984, is a leader in the fields of silicon nanotechnology, semiconductors and bioelectronics. Founding faculty on the Johns Hopkins side of the collaboration include Robert Bollinger, M.D., M.P.H., a professor and director of the Johns Hopkins Center for Clinical Global Health Education (CCGHE); Stuart Ray, M.D., FIDSA, professor of Medicine and Oncology in the Division of Infectious Diseases of the Department of Medicine; Denis Wirtz, the Theophilus Halley Smoot Professor of Chemical and Biomolecular Engineering; and William Osburn, Ph.D., an instructor in the Division of Infectious Diseases. This new initiative significantly expands upon an established relationship between imec and JHU’s School of Engineering.

About – Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of more than 2,000 people includes more than 650 industrial residents and guest researchers. In 2012, imec’s revenue (P&L) totaled 320 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a “stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About – Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading academic health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM’s vision, “Together, we will deliver the promise of medicine,” is supported by its mission to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, and more than 30 primary health care outpatient sites. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years in a row by U.S. News & World Report. 

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

Littelfuse Protection IC (eFuse)
If you are working on an industrial, consumer, or telecom design, protection ICs can offer a variety of valuable benefits including reverse current protection, over temperature protection, short circuit protection, and a whole lot more. In this episode of Chalk Talk, Amelia Dalton and Pete Pytlik from Littelfuse explore the key features of protection ICs, how protection ICs compare to conventional discrete component solutions, and how you can take advantage of Littelfuse protection ICs in your next design.
May 8, 2023
42,376 views