industry news
Subscribe Now

Microsemi 750 Watt GaN on SiC RF Power Transistor Delivers Unparalleled High-power Performance for Aviation Applications

ALISO VIEJO, Calif.—Sept. 12, 2013—Microsemi Corporation (Nasdaq: MSCC), a leading provider of semiconductor solutions differentiated by power, security, reliability and performance, today expanded its family of radio frequency (RF) power transistors based on gallium nitride (GaN) high electron mobility transistor (HEMT) on silicon carbide (SiC) technology with a new 750 watt (W) RF transistor. The MDSGN-750ELMV delivers outstanding, highest power performance in a full range of air traffic control and collision avoidance equipment. Targeted applications include commercial secondary surveillance radar (SSR), which is used globally to interrogate and identify aircrafts in airport locales and regional centers within about a 200 mile range.

“Microsemi’s reputation as a leader in RF solutions is founded on 30 years of experience, a stellar engineering team, and a dedication to delivering new products that push the envelope in terms of performance and reliability,” said David Hall, vice president and general manager of RF Integrated Solutions for Microsemi. “From components to assemblies and custom packaging, we will continue to invest in the technologies and equipment required to further solidify our leadership position and better serve our customers.”

The MDSGN-750ELMV transistor delivers unparalleled performance of 750 W of peak power with 17 decibel (dB) of power gain and typical 70 percent drain efficiency when operating at 1030/1090 megahertz (MHz) to provide the most power in one single-ended device of its type covering this band.

In addition, the new RF device is capable of handling the demanding commercial Mode-S ELM (Extended Length Message) pulsing conditions for both the 1030MHz ground based interrogators and 1090MHz airborne transponders and can be used in the output stage of high performance ground. ELM makes air travel safer by facilitating the communication of shared weather and air traffic situational awareness information to aircrafts within a regional locale. It is also ideal for use in commercial air-to-air traffic alert and collision avoidance systems (TCAS) and in IFF (Identify Friend or Foe) systems, which are essential in protecting friendly aircrafts within a specific area.

Key Technical Features:

  • ELM pulsing format –    Burst of quantity 48 pulses:    32 us (ON) / 18 us (OFF)
    • Burst Repetition Period:        24 milliseconds
    • Long Term Duty Cycle:           6.4 percent
  • Excellent output power:                                 750 W
  • High power gain:                                        >17.2 decibel minimum
  • Superb drain efficiency                                 70 percent drain efficiency
  • Drain bias – Vdd:                                       +50 volts
  • Breakdown Voltage (BVdss)                               >200 volts
  • Low thermal resistance:                                 0.24 o Celsius per watt
  • Power output temperature stability -40C to +85C:         < ±0.7 decibels

GaN on SIC HEMT provide several advantages over alternative process technologies including higher power performance, bill-of-material cost savings, and a reduced device-size footprint. For example, the MDSGN-750ELMV offers the following benefits:

  • Single-ended design with simplified impedance matching, replacing lower power devices that require additional levels of combining
  • Highest peak power and power gain for reduced system power stages and final stage combining
  • Single output stage pair provides 1.5 kilowatt (kW) peak output power with margin
  • Combining four output stage pairs delivers a full system >5 kW peak output power
  • 50 volts bias allows use of existing power supply rail with reduced DC current demand
  • Extremely rugged performance improves system yields
  • Amplifier size is 50 percent smaller than devices built with silicon bipolar junction transistors (Si BJT) or laterally diffused metal oxide semiconductor (LDMOS) devices
  • Greatly more breakdown voltage headroom than Si bipolar and Si LDMOS and the ability to operate at higher junction temperatures gives more rugged operation and greater MTTF
  • Excellent stable over temperature operation -55C to +85C

In addition to RF components, Microsemi’s commercial aviation product portfolio includes: FPGAs; TVS diodes; integrated standard and custom products; integrated circuits; power conditioning and management components and modules; application specific integrated circuits (ASICs); microwave devices and components; high-density memory products; custom semiconductor packaging; and integrated power distribution systems.

Packaging and Availability:

The MDSGN-750ELMV is offered in a single-ended package and is built with 100 percent high-temperature gold (Au) metallization and wires in a hermetically solder-sealed package for long-term reliability. Loaner demonstration units are available to qualified customers and technical datasheets are available on the Microsemi website at www.microsemi.com. For more information, email sales.support@microsemi.com with “GAN RF” in the subject line.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance, radiation-hardened and highly reliable analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,000 employees globally. Learn more at www.microsemi.com.

Leave a Reply

featured blogs
May 8, 2024
Learn how artificial intelligence of things (AIoT) applications at the edge rely on TSMC's N12e manufacturing processes and specialized semiconductor IP.The post How Synopsys IP and TSMC’s N12e Process are Driving AIoT appeared first on Chip Design....
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Introducing Altera® Agilex 5 FPGAs and SoCs

Sponsored by Intel

Learn about the Altera Agilex 5 FPGA Family for tomorrow’s edge intelligent applications.

To learn more about Agilex 5 visit: Agilex™ 5 FPGA and SoC FPGA Product Overview

featured paper

Achieve Greater Design Flexibility and Reduce Costs with Chiplets

Sponsored by Keysight

Chiplets are a new way to build a system-on-chips (SoCs) to improve yields and reduce costs. It partitions the chip into discrete elements and connects them with a standardized interface, enabling designers to meet performance, efficiency, power, size, and cost challenges in the 5 / 6G, artificial intelligence (AI), and virtual reality (VR) era. This white paper will discuss the shift to chiplet adoption and Keysight EDA's implementation of the communication standard (UCIe) into the Keysight Advanced Design System (ADS).

Dive into the technical details – download now.

featured chalk talk

Improving Chip to Chip Communication with I3C
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Amelia Dalton and Toby Sinkinson from Microchip explore the benefits of I3C. They also examine how I3C helps simplify sensor networks, provides standardization for commonly performed functions, and how you can get started using Microchips I3C modules in your next design.
Feb 19, 2024
12,346 views