industry news
Subscribe Now

eMemory Technology Selects Berkeley Design Automation Analog FastSPICE™ Platform for Embedded Non-Volatile Memory

SANTA CLARA, CA, — June 18, 2013— Berkeley Design Automation, Inc., provider of the world’s fastest nanometer circuit verification, today announced that eMemory Technology, a leader in embedded non-volatile memory silicon IP, has selected the company’s Analog FastSPICE (AFS) Platform for block-level characterization, and full-circuit verification of its embedded non-volatile memory products for SoCs in wireless, consumer, industrial, and automotive applications.

“We have stringent verification requirements for our NeoEE product, a true rewritable memory technology implemented in CMOS with up to 100K program/erase cycles,” said C.Y. Lin, Vice President, R&D, eMemory Technology. “We selected the AFS Platform because it delivers nanometer SPICE accuracy significantly faster than traditional SPICE simulators to verify and characterize our 28nm CMOS embedded non-volatile memory IP for PMICs, MCUs, RFICs, and other SoCs.”

The Analog FastSPICE Platform provides the world’s fastest circuit verification for nanometer analog, RF, mixed-signal, and custom digital circuits. Foundry certified to 20nm, the AFS Platform delivers nanometer SPICE accuracy 5x-10x faster on a single core and 2x-4x faster on multicore systems versus any other simulator. For circuit characterization, the AFS Platform includes the industry’s only comprehensive silicon-accurate device noise analysis and delivers near-linear performance scaling with the number of cores. For large circuits, it delivers >10M-element capacity, the fastest near-SPICE-accurate simulation, and the fastest, most accurate mixed-signal simulation. Available licenses include AFS circuit simulation, AFS Mega, AFS Nano, AFS Transient Noise Analysis, AFS RF Analyses, AFS Co-Simulation, AFS AMS, and ACE.

“We are delighted that eMemory has selected the AFS Platform for verification and characterization of their embedded non-volatile memory products.” said Ravi Subramanian, president and CEO of Berkeley Design Automation. “Developing cost-effective and size-competitive embedded non-volatile memory is a tremendous design challenge. eMemory’s selection validates the tremendous value Berkeley Design Automation brings to semiconductor memory developers.”

About Berkeley Design Automation

Berkeley Design Automation, Inc. is the recognized leader in nanometer circuit verification. The company combines the world’s fastest nanometer circuit verification platform, Analog FastSPICE, with exceptional application expertise to uniquely address nanometer circuit design challenges. More than 100 companies rely on Berkeley Design Automation to verify their nanometer-scale circuits. Berkeley Design Automation was recognized as one of the 500 fastest growing technology companies in North America by revenue in 2011 and again in 2012 by Deloitte. The company is privately held and backed by Woodside Fund, Bessemer Venture Partners, Panasonic Corp., NTT Corp., IT-Farm, and MUFJ Capital. For more information, visit http://www.berkeley-da.com.

Leave a Reply

featured blogs
Apr 26, 2024
LEGO ® is the world's most famous toy brand. The experience of playing with these toys has endured over the years because of the innumerable possibilities they allow us: from simple textbook models to wherever our imagination might take us. We have always been driven by ...
Apr 26, 2024
Biological-inspired developments result in LEDs that are 55% brighter, but 55% brighter than what?...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Secure Authentication ICs for Disposable and Accessory Ecosystems
Sponsored by Mouser Electronics and Microchip
Secure authentication for disposable and accessory ecosystems is a critical element for many embedded systems today. In this episode of Chalk Talk, Amelia Dalton and Xavier Bignalet from Microchip discuss the benefits of Microchip’s Trust Platform design suite and how it can provide the security you need for your next embedded design. They investigate the value of symmetric authentication and asymmetric authentication and the roles that parasitic power and package size play in these kinds of designs.
Jul 21, 2023
32,294 views