industry news
Subscribe Now

SEMATECH and Intermolecular Partner to Accelerate EUV Lithography and Advanced Transistor Development

ALBANY, N.Y. and SAN JOSE, Calif., – April 9, 2013 – In an effort that will accelerate commercialization of extreme ultraviolet (EUV) lithography technology and the development of next-generation transistors, SEMATECH announced today that Intermolecular, Inc. (NASDAQ: IMI) has joined SEMATECH’s Lithography and Front End Processes (FEP) programs. The companies have agreed to co-develop new methods to reduce overall cost of ownership (CoO) for Extreme UltraViolet (EUV) lithography, and to co-explore new materials, processes, and integration schemes for advanced logic integrated circuit technologies. 

“There are technology gaps the industry needs to address to enable cost-effective insertion of EUV lithography at the 22 nm half-pitch,” said Stefan Wurm, SEMATECH’s director of Lithography. “SEMATECH is pleased to welcome Intermolecular as a partner. We will work together to accelerate the investigation and qualification of chemical formulations needed to establish a production-worthy EUV lithography technology.”

Intermolecular’s High Productivity Combinatorial (HPC™) platform provides disruptive research and development (R&D) capability that allows for prototyping and characterization of atomic-scale devices at rates 10-100 times faster than can be achieved with conventional approaches. Such methodologies and technologies will be used in both of the program collaborations.

“As semiconductor dimensions are scaled down further, contact resistance remains a critical issue,” said Tony Chiang, Chief Technology Officer, Intermolecular. “Our unique capabilities to accelerate R&D across leading-edge semiconductor processes and devices complement SEMATECH’s expertise in advanced CMOS test structures and process flows. We are pleased to join in this pre-competitive collaboration intended to accelerate the transfer of new technologies into industry.”

Intermolecular’s mission is to improve R&D efficiency in the semiconductor and clean energy industries through collaborations that use its HPC platform.

About Intermolecular, Inc.

Intermolecular® has pioneered a proprietary approach to accelerate research and development, innovation, and time-to-market for the semiconductor and clean energy industries. The approach consists of its proprietary High Productivity Combinatorial (HPC™) platform, coupled with its multi-disciplinary team. Through paid Collaborative Development Programs (CDPs) with its customers, Intermolecular develops proprietary technology and intellectual property for its customers focused on advanced materials, processes, integration and device architectures. Founded in 2004, Intermolecular is based in San Jose, California. “Intermolecular” and the Intermolecular logo are registered trademarks; and “HPC” is a trademark of Intermolecular, Inc.; all rights reserved. Learn more at www.intermolecular.com

About SEMATECH

For over 25 years, SEMATECH®, the international consortium of leading semiconductor device, equipment, and materials manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Through our unwavering commitment to foster collaboration across the nanoelectronics industry, we help our members and partners address critical industry transitions, drive technical consensus, pull research into the industry mainstream, improve manufacturing productivity, and reduce risk and time to market. Information about SEMATECH can be found at www.sematech.org. Twitter:www.twitter.com/sematech

 

Leave a Reply

featured blogs
Apr 26, 2024
LEGO ® is the world's most famous toy brand. The experience of playing with these toys has endured over the years because of the innumerable possibilities they allow us: from simple textbook models to wherever our imagination might take us. We have always been driven by ...
Apr 26, 2024
Biological-inspired developments result in LEDs that are 55% brighter, but 55% brighter than what?...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Stepper Motor Basics & Toshiba Motor Control Solutions
Sponsored by Mouser Electronics and Toshiba
Stepper motors offer a variety of benefits that can add value to many different kinds of electronic designs. In this episode of Chalk Talk, Amelia Dalton and Doug Day from Toshiba examine the different types of stepper motors, the solutions to drive these motors, and how the active gain control and ADMD of Toshiba’s motor control solutions can make all the difference in your next design.
Sep 29, 2023
26,641 views