industry news
Subscribe Now

R&S ZNB Network Analyzer from Rohde & Schwarz Uses the SET2DIL Signal Integrity Technique To Validate High-Speed Differential Bus Performance on PCBs

Columbia, MD, January 31, 2012 — Utilizing SET2DIL (Single-Ended to Differential Insertion Loss) algorithm for validating high-speed differential transmission line performance on printed circuit boards (PCBs), the R&S ZNB network analyzer is a high-performance network analyzer that provides a wide dynamic range with high accuracy, short measurement time and ease of use.  The R&S ZNB network analyzer’s enhanced time-domain capabilities, coupled with the IPC-TM-650 approved SET2DIL methodology, enables post-processing of the network analyzer’s time domain reflectometer (TDR) and time-domain transmission (TDT) data to display differential insertion losses on PCB traces.  

Signal attenuation and distortion from dielectric and conductor losses is a major factor in proper high-speed differential transmission line simulation and design.  The insertion loss of multi-GHz traces must be modeled correctly for simulations to represent actual performance, and validated on actual designs to ensure simulation assumptions were met. 

The novel SET2DIL algorithm is a method for performing a SDD21 four-port frequency domain measurement using a two-port time domain measurement. This methodology derives differential insertion loss (SDD21) using only single-ended TDR/TDT (or 2-port VNA) measurements at a single probe location. This method, in conjunction with Rohde & Schwarz’s R&S ZNB network analyzer, will eventually  replace current 4-port measurements of two probe locations, which are appropriate for a laboratory environment. This technique allows much easier measurement of SDD21, making it acceptable for a wider variety of users, including high-volume manufacturing. 

“Rohde & Schwarz  is working on incorporating the SET2DIL algorithm into the ZNB Network Analyzer to provide unparalleled measurement accuracy and speed required for insertion loss measurements for high volume board testing and manufacturing,” said Jonathan Leitner, Product Marketing Manger – Network Analyzers at Rohde & Schwarz.  

Built into to the R&S ZNB network analyzer is an enhancement factor that allows the lower frequency analyzer to replace higher frequency – and higher cost – units for time-domain reflectometer (TDR) and time-domain transmission (TDT) functionality. Compared to high frequency devices, the R&S ZNB analyzer delivers a broader frequency range for the time domain transform (TDT) by one linear factor, meaning that the original sweep range and the measured sweep points are used, and no additional assumptions are made.  With higher resolution enhancement factors, the measurement data is extrapolated using a linear prediction method. As a result, the resolution in time domain is improved.  

The R&S ZNB network analyzer covers the frequency range from 9kHz to 4.5GHz or 8.5GHz, features a dynamic range up to 140dB, a sweep time of 4ms with 401 points, low trace noise and excellent stability. The ZNB has been designed to test demanding applications for the development and production of RF active and passive components. 

The R&S ZNB network analyzer has a large touchscreen that allows users to access all instrument functions with no more than three operating steps. The screen offers ample space for results, displaying even extensive measurements in a clear and straightforward manner.

Rohde & Schwarz

Rohde & Schwarz is an independent group of companies specializing in electronics. It is a leading supplier of solutions in the fields of test and measurement, broadcasting, radiomonitoring and radiolocation, as well as secure communications. Established more than 75 years ago, Rohde & Schwarz has a global presence and a dedicated service network in over 70 countries. It has approx. 7400 employees and achieved a net revenue of €1.3 billion (US$1.6 billion) in fiscal year 2009/2010 (July 2009 to June 2010). Company headquarters are in Munich, Germany.

Leave a Reply

featured blogs
Oct 23, 2020
Processing a component onto a PCB used to be fairly straightforward. Through-hole products, or a single or double row surface mount with a larger centerline rarely offer unique challenges obtaining a proper solder joint. However, as electronics continue to get smaller and con...
Oct 23, 2020
[From the last episode: We noted that some inventions, like in-memory compute, aren'€™t intuitive, being driven instead by the math.] We have one more addition to add to our in-memory compute system. Remember that, when we use a regular memory, what goes in is an address '...
Oct 23, 2020
Any suggestions for a 4x4 keypad in which the keys aren'€™t wobbly and you don'€™t have to strike a key dead center for it to make contact?...
Oct 23, 2020
At 11:10am Korean time this morning, Cadence's Elias Fallon delivered one of the keynotes at ISOCC (International System On Chip Conference). It was titled EDA and Machine Learning: The Next Leap... [[ Click on the title to access the full blog on the Cadence Community ...

featured video

Demo: Inuitive NU4000 SoC with ARC EV Processor Running SLAM and CNN

Sponsored by Synopsys

See Inuitive’s NU4000 3D imaging and vision processor in action. The SoC supports high-quality 3D depth processor engine, SLAM accelerators, computer vision, and deep learning by integrating Synopsys ARC EV processor. In this demo, the NU4000 demonstrates simultaneous 3D sensing, SLAM and CNN functionality by mapping out its environment and localizing the sensor while identifying the objects within it. For more information, visit inuitive-tech.com.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured paper

Fundamentals of Precision ADC Noise Analysis

Sponsored by Texas Instruments

Build your knowledge of noise performance with high-resolution delta-sigma ADCs. This e-book covers types of ADC noise, how other components contribute noise to the system, and how these noise sources interact with each other.

Click here to download the whitepaper

Featured Chalk Talk

Accelerate the Integration of Power Conversion with microBUCK® and microBRICK™

Sponsored by Mouser Electronics and Vishay

In the world of power conversion, multi-chip packaging, thermal performance, and power density can make all of the difference in the success of your next design. In this episode of Chalk Talk, Amelia Dalton chats with Raymond Jiang about the trends and challenges in power delivery and how you can leverage the unique combination of discrete MOSFET design, IC expertise, and packaging capability of Vishay’s microBRICK™and microBUCK® integrated voltage regulators.

Click here for more information about Vishay microBUCK® and microBRICK™ DC/DC Regulators