industry news
Subscribe Now

Multicore Association to Obliterate Parallel Processing Obstacles on Complex Multicore Systems

El Dorado Hills, Calif. – July 26, 2011 – The Multicore Association™, a global non-profit organization that develops standards to speed time-to-market for products with multicore processor implementations, has announced its continued intent to tear down barriers that slow development of complex multicore applications. These barriers arise when programmers attempt to split programmatic workloads into parallel tasks that can be executed in parallel on different processor cores. The organization has launched a new working group, Multicore Task Management API (MTAPI), charged with creating an industry-standard specification for an application program interface (API) that supports the coordination of tasks on embedded parallel systems. 

Using homogeneous and/or heterogeneous multicore processors requires the programmer to develop software that splits a software program into tasks that can be executed in parallel on different processor cores. Today’s operating systems and runtime libraries for embedded systems provide threads or thread-like mechanisms that are not suited for the fine-grain parallelism required by multicore architectures, typically because the coordination of hundreds or thousands of parallel tasks generates too much overhead relative to the actual computation time. The current programming model requires complex, low-level synchronization and programming with threads is limited to single operating systems running on single homogeneous multicore processors. In heterogeneous embedded systems, however, a system-wide task management is needed. 

The MTAPI specification aims to eliminate these obstacles by providing an API that allows programmers to develop parallel embedded software in a straight-forward manner. Core features of MTAPI are runtime scheduling and mapping of tasks to processor cores. Due to its dynamic behavior, MTAPI is intended for optimizing throughput on multicore-systems, allowing the software developer to improve the task scheduling strategy for latency and fairness. 

Unlike existing APIs that provide task management functionality (e.g. OpenMP, TBB, Cilk), the MTAPI specification will allow implementations for resource-constrained embedded systems, such as those with a small memory footprint, deterministic behavior, and allow for hardware-specific optimizations. Furthermore, portability is essential for the implementation. Therefore, MTAPI will support different processor architectures and can be implemented on top of different operating systems or as a bare-metal solution. In short, MTAPI supports asymmetric multiprocessing at the hardware and software level. 

Urs Gleim, program manager for Parallel Processing Systems at Siemens AG,

Corporate Technology, is chairing the MTAPI Working Group, with technical experts participating from industry and academia including: ENEA, Freescale Semiconductor, LSI, Qualcomm, Plurality, PolyCore Software, Siemens, Texas Instruments, University of Houston, and Wind River. 

“The challenges of task management and parallel programming are exacerbated by the use of complex SoCs supporting heterogeneous architectures and hardware acceleration units. MTAPI will uncouple the hardware details and let the software developer focus on creating the parallel solution,” said Urs Gleim. “This important standard is a critical need in the embedded industry and I’m highly motivated to chair this working group.” 

“MTAPI is aligned with our previously released specifications, MCAPI and MRAPI. Together, these APIs provide a balanced infrastructure to support other multicore services and value-added functions,” said Markus Levy, Multicore Association president. “These services and functions include dynamic load balancing, global power management, and quality of service.” 

Inquiries regarding membership in the Multicore Association and participation in this working group can be made to Markus Levy (markus.levy@multicore-association.org). In line with the other working groups of the MCA, the MTAPI specification will ultimately be publicly available to ensure unconstrained industry-wide adoption. However, participation in this working group will help to ensure that your ideas are considered and potentially integrated into the specification. The working group expects to complete the MTAPI specification in Q4 of 2012.

About The Multicore Association

The Multicore Association provides a neutral forum for vendors who are interested in, working with, and/or proliferating multicore-related products, including processors, infrastructure, devices, software, and applications. The consortium has made available its Multicore Communications API (MCAPI) and Multicore Resource Management API (MRAPI) specifications through its website. Currently, the organization has active working groups focused on: Multicore Virtualization, Multicore Communications (Version 2.x), Multicore Programming Practices (MPP), Multicore Task Management (MTAPI) and Tools Infrastructure (TIWG).

Members include Abo Akademi University, AMD, Argon Design, CAPS entreprise, Carnegie Mellon University, Cavium Networks, Codeplay, CriticalBlue, Delft University of Technology, EADS North America, Ecole Polytechnique de Montreal, EfficiOS, Enea, eSOL, Freescale Semiconductor, IMEC, Intel, LG Electronics Co, LSI , Mentor Graphics, MIPS Technologies, National Instruments, nCore Design LLC, NetLogic Microsystems, Netronome, Nokia Siemens Networks, OneAccess, PolyCore Software, Qualcomm, RadiSys, Sage Electronic Engineering, Samsung Electronics, Siemens, Texas Instruments, Tilera, UAS Technikum Wien, UltraSoC Technologies, University of Houston, University of Tsukuba, and Wind River. Further information is available at www.multicore-association.org.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadenceā€™s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Switch to Simple with Klippon Relay
In this episode of Chalk Talk, Amelia Dalton and Lars Hohmeier from WeidmĆ¼ller explore the what, where, and how of WeidmĆ¼ller's extensive portfolio of Klippon relays. They investigate the pros and cons of mechanical relays, the benefits that the Klippon universal range of relays brings to the table, and how WeidmĆ¼ller's digital selection guide can help you choose the best relay solution for your next design.
Sep 26, 2023
26,611 views