industry news
Subscribe Now

Crocus Introduces Breakthrough Magnetic-Logic-Unit™ (MLU) Technology

Crocus Technology, a leading developer of magnetic semiconductors, today announced its Magnetic-Logic-Unit (MLU) architecture, a scalable evolution of Crocus’ Thermally Assisted Switching™ (TAS) technology, that permits practical implementation of advanced logic and memory capabilities, a first for the industry. This innovation will expand the market for Crocus’ magnetic technology by opening up new applications in high density data storage, secure commerce and communications, high performance network processing and high temperature automotive and industrial uses.

Traditional magnetic memories are based on arrays of memory cells where each cell contains two magnetic layers in a stacked configuration. The first layer, often called the reference layer, is always magnetized in one direction. The second layer, called the storage layer, is either magnetized in the same direction as the reference layer to store a “1”, or the opposite direction to store a “0”. Crocus’ new MLU is based on its proven TAS technology to provide unprecedented stability to the stored data in normal operation. By leveraging this unique stability feature, the reference layer in the MLU architecture can be configured with fixed magnetization to implement a traditional NOR function, with floating magnetization to implement a NAND function, or with driven magnetization to implement an XOR function.

In high density memory applications, MLU opens the way to implementation of NAND configurations in magnetic memory, which was previously possible only in Flash memory technology. MLU NAND memory can be two to four times denser than conventional magnetic memory with the added benefit of full random access. Crocus’ MLU XOR, called Match-In-Place™, implements ultra-secure compare and encryption functions, making smart cards, identity cards, SIM cards, and near-field communications (NFC) devices tamper-proof. Match-In-Place also implements the search and compare functions required in network routing applications and high performance computing and can achieve up to fifty times the density of conventional CMOS hardware search processors. In addition, MLU in all its configurations is capable of normal operation at temperatures up to 200?C, making it ideal for use in automotive and industrial electronics.

“MLU has the potential to replace SRAM, DRAM, NAND, NOR and OTP in many stand alone and embedded memory products,” said Bertrand F. Cambou, executive chairman of Crocus Technology. “Because MLU’s NOR, NAND and XOR capabilities are built on a single wafer manufacturing process with different design architectures, they can be easily integrated into System- on-Chip (SOC) implementations.”

MLU is fully compatible with Crocus’ current wafer manufacturing process. Crocus will establish volume production of MLU based products in 130nm at its foundry partner Tower Jazz Semiconductor, as well as at its new Russian subsidiary Crocus Nano Electronics (CNE) for 90nm, 65nm, 45nm, and smaller lithography. Both will be based on magnetic technology developed in Crocus’ Grenoble facility in cooperation with its clean room partner Minatec.

About Crocus Technology 

Crocus is a leading developer of magnetic semiconductor technology for dense, non-volatile, high-speed, scalable chip solutions for general and special purpose applications. The company’s TAS innovation originated in the Grenoble-based Spintec laboratory, a world-leading R&D center in Spintronics, affiliated with French national laboratories CEA and CNRS. The company will offer discrete, high density memory chips that target a wide variety of telecommunication, networking, storage, computing and handheld applications. The company also licenses its technology for both standalone and embedded chip applications. Crocus’ technology is covered by a comprehensive patent portfolio. Find Crocus at: www.crocustechnology.com.

Leave a Reply

featured blogs
May 17, 2022
'Virtuoso Meets Maxwell' is a blog series aimed at exploring the capabilities and potential of Virtuoso® RF Solution and Virtuoso MultiTech. So, how does Virtuoso meet Maxwell? Now,... ...
May 17, 2022
Explore Arm's SystemReady program, and learn how we're simplifying hardware/software compliance through pre-silicon testing for Base System Architecture (BSA). The post Collaborating to Ensure that Software Just Works Across Arm-Based Hardware appeared first on From Silicon ...
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...
Apr 29, 2022
What do you do if someone starts waving furiously at you, seemingly delighted to see you, but you fear they are being overenthusiastic?...

featured video

Intel® Agilex™ M-Series with HBM2e Technology

Sponsored by Intel

Intel expands the Intel® Agilex™ FPGA product offering with M-Series devices equipped with high fabric densities, in-package HBM2e memory, and DDR5 interfaces for high-memory bandwidth applications.

Learn more about the Intel® Agilex™ M-Series

featured paper

Intel Agilex FPGAs Deliver Game-Changing Flexibility & Agility for the Data-Centric World

Sponsored by Intel

The new Intel® Agilex™ FPGA is more than the latest programmable logic offering—it brings together revolutionary innovation in multiple areas of Intel technology leadership to create new opportunities to derive value and meaning from this transformation from edge to data center. Want to know more? Start with this white paper.

Click to read more

featured chalk talk

Introducing Vivado ML Editions

Sponsored by Xilinx

There are many ways that machine learning can help improve our IC designs, but when it comes to quality of results and design iteration - it’s a game changer. In this episode of Chalk Talk, Amelia Dalton chats with Nick Ni from Xilinx about the benefits of machine learning design optimization, what hierarchical module-based compilation brings to the table, and why extending a module design into an end-to-end flow can make all the difference in your next IC design.

Click here for more information about Vivado ML