fresh bytes
Subscribe Now

How to become an expert tightrope walker

Samuel_Dixon_Niagara.jpg

Life is a constant balancing act, especially if you’re a tightrope walker. The best athletes make treading a circus high wire or a low-hanging slackline look effortless, but they’re actually juggling complex challenges of perception and motor control. Now researchers have constructed a mathematical explanation of how such nimble acrobats remain upright. Their calculations point to a theoretical “sweet spot,” or optimal conditions for a person to balance on a line with minimal effort. Such a model may help scientists better understand how the brain and body work together to pull off difficult tasks.

The study originated from a thought experiment, as researchers at Harvard University pondered the ultimate balancing challenge. Keeping steady on a stationary plank or beam is hard enough, but a rope adds the destabilizing element of motion. A rope not only sways but also moves in response to a person’s movement, forcing the walker to constantly change position. In this shaky feedback loop, “small errors can be amplified very easily,” says study author L. Mahadevan, an applied mathematician and scientist.

The researchers created a simple model of a person on a rope with forces, masses, angles, and velocities to describe how the rope and person respond to each other. They also considered the sensory systems that alert us when our bodies start to teeter, including our eyes, the organs of our inner ear, and orientation information from our ankles and knees. In their calculations, they suggest that rapid information about falling provided by the inner ear is sufficient to help a rope walker maintain his or her balance.
via sciencemag.org

Continue reading 

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

GaN Solutions Featuring EcoGaN™ and Nano Pulse Control
In this episode of Chalk Talk, Amelia Dalton and Kengo Ohmori from ROHM Semiconductor examine the details and benefits of ROHM Semiconductor’s new lineup of EcoGaN™ Power Stage ICs that can reduce the component count by 99% and the power loss of your next design by 55%. They also investigate ROHM’s Ultra-High-Speed Control IC Technology called Nano Pulse Control that maximizes the performance of GaN devices.
Oct 9, 2023
26,325 views