fresh bytes
Subscribe Now

$600 Shoelace-tying robot was built on a shoestring budget

With a budget of just $600—a mere pittance compared to what robots like ATLAS cost to develop—students from the University of California’s Davis’ College of Engineering created a machine that’s capable of tying a shoe all by itself.

After mastering the skill when you’re five years old, you probably don’t give much thought to the intricate ballet of fingers and laces that’s performed every time you tie your shoes. But in reality, it’s a complicated process. What makes these engineering student’s machine even more impressive is that it’s powered by just two motors, and relies on a series of gears and moving rods to pick up and move a pair of shoelaces around. Read more at Gizmodo

Leave a Reply

featured blogs
Aug 13, 2020
General Omar Bradley famously said: '€œAmateurs talk strategy. Professionals talk logistics.'€ And Napoleon (perhaps) said "An army marches on its stomach". That's not to underestimate... [[ Click on the title to access the full blog on the Cadence Commun...
Aug 12, 2020
Samtec has been selling its products online since the early 2000s, the very early days of eCommerce. We’ve been through a couple of shopping cart iterations since then. Before this recent upgrade, Samtec.com had been running on a cart system that was built in 2011. It w...
Aug 11, 2020
Making a person appear to say or do something they did not actually say or do has the potential to take the war of disinformation to a whole new level....
Aug 7, 2020
[From the last episode: We looked at activation and what they'€™re for.] We'€™ve talked about the structure of machine-learning (ML) models and much of the hardware and math needed to do ML work. But there are some practical considerations that mean we may not directly us...

Featured Paper

True 3D EM Modeling Enables Fast, Accurate Analysis

Sponsored by Cadence Design Systems

Tired of patchwork 3D EM analysis? Impedance discontinuity can destroy your BER and cause multiple design iterations. Using today’s 3D EM modeling tools can take you days to accurately model the interconnect structures. The Clarity™ 3D Solver lets you tackle the most complex EM challenges when designing systems for 5G, high-performance computing, automotive and machine learning applications. The Clarity 3D Solver delivers gold-standard accuracy, 10X faster analysis speeds and virtually unlimited capacity for true 3D modeling of critical interconnects in PCB, IC package and system-on-IC (SoIC) designs.

Click here for more information

Featured Paper

Computational Software: 4 Ways It is Transforming System Design & Hardware Design

Sponsored by BestTech Views

Cadence President Anirudh Devgan shares his detailed insights on Computational Software. Anirudh provides a clear definition of computational software, and four specific ways computational software is transforming system design & hardware design -- including highly distributed compute, reduced memory footprints, co-optimization, and machine learning applications.

Click here for the white paper.

Featured Chalk Talk

Series 2 Product Security

Sponsored by Mouser Electronics and Silicon Labs

Side channel attacks such as differential power analysis (DPA) present a serious threat to our embedded designs. If we want to defend our systems from DPA and similar attacks, it is critical that we have a secure boot and root of trust. In this episode of Chalk Talk, Amelia Dalton chats with Gregory Guez from Silicon Labs about DPA, secure debug, and the EFR32 Series 2 Platform.

Click here for more information about Silicon Labs xGM210P Wireless Module Starter Kit