fish fry
Subscribe Now

Your Power Plane or Mine?

Do not pass go. Do not collect $200. Go directly to the power plane. Whether we like it or not, power integrity analysis is now a bigger (and messier) part of our PCB design process. In this week’s Fish Fry, we get down to the bare metal of those pesky power planes with Brad Griffin of Cadence. Also this week, we check out a super cool new 3D printed robot (yes, you want one) and investigate what sets this little cutie apart from other humanoid robots. 

 

Listen to this episode

Download this episode (right click and save)

Links for October 25, 2013

More Information about Cadence’s SI / PI Analysis – Sigrity Tool Suite

More Information about Seattle’s plans to use excess data center power to heat buildings

More Information about Poppy – the 3D Printed Humanoid Robot 

Leave a Reply

featured blogs
Nov 21, 2019
Many of these sayings were already known to me, but there are a lot I've never heard before....
Nov 21, 2019
Edge card connectors — or are they card edge connectors? — are a popular design option. That’s because they make it easy to plug and unplug a mating card that may require more cycling than standard PCBs, and because the socket allows for relatively easy syst...
Nov 20, 2019
During ICCAD earlier in the month, there was the 2nd WOSET, which stands for Workshop on Open-Source EDA Technology. I wasn't there but Anton Klotz, who runs the Cadence Academic Network in... [[ Click on the title to access the full blog on the Cadence Community site. ...
Nov 18, 2019
By Srinivas Velivala – Mentor, A Siemens Business MaxLinear implemented the Calibre RealTime Digital interface for fast, iterative signoff DRC during P&R, and shaved weeks off tapeout schedules while meeting PPA targets. Learn how they did it… At the 2019 TSM...
Nov 15, 2019
[From the last episode: we looked at how intellectual property helps designers reuse circuits.] Last week we saw that, instead of creating a new CPU, most chip designers will buy a CPU design '€“ like a blueprint of the CPU '€“ and then use that in a chip that they'€™re...